Search results

1 – 10 of 47
Article
Publication date: 17 September 2020

Mohammad Sadegh Mirzajani Darestani, Mohammad Bagher Tavakoli and Parviz Amiri

The purpose of this paper is to propose a new design strategy to enhance the bandwidth and efficiency of the power amplifier.

Abstract

Purpose

The purpose of this paper is to propose a new design strategy to enhance the bandwidth and efficiency of the power amplifier.

Design/methodology/approach

To realize the introduced design strategy, a power amplifier was designed using TSMC CMOS 0.18um technology for operating in the Ka-band, i.e. the frequency range of 26.5-40 GHz. To design the power amplifier, first, a power divider (PD) with a very wide bandwidth, i.e. 1-40 GHz, was designed to cover the whole Ka-band. The designed Doherty power amplifier consisted of two different amplification paths called main and auxiliary. To amplify the signal in each of the two pathways, a cascade distributed power amplifier was used. The main reason for combining the distributed structure and cascade structure was to increase the gain and linearity of the power amplifier.

Findings

Measurements results for designed power dividers are in good agreement with simulations results. The simulation results for the introduced structure of the power amplifier indicated that the gain of the proposed power amplifier at the frequency of 26-35 GHz was more than 30 dB. The diagram of return loss at the input and output of the power amplifier in the whole Ka-band was less than −8dB. The maximum power-added efficiency (PAE) of the designed power amplifier was 80%. The output P1dB of the introduced structure was 36 dB and the output power of the power amplifier was 36 dBm. Finally, the IP3 value of the power amplifier was about 17 dB.

Originality/value

The strategy presented in this paper is based on the usage of Doherty and distributed structures and a new wideband power divider to benefit from their advantages simultaneously.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 February 2020

Jin Guan, Min Gong and Bo Gao

A novel Ka-band compact parallel-coupled microstrip bandpass filter with harmonic suppression performance has been designed, implemented and tested on GaAs MMIC.

Abstract

Purpose

A novel Ka-band compact parallel-coupled microstrip bandpass filter with harmonic suppression performance has been designed, implemented and tested on GaAs MMIC.

Design/methodology/approach

This proposed filter consists of modified coupled-line units with T-shaped open-stubs.

Findings

The proposed filter with T-shaped open-stubs is valuable in performance with low loss at fundamental frequency, suppression at harmonic frequencies and small size. The simulation is based on full-wave electromagnetic analysis and the measurement is based on chip test. It shows an insertion loss below 1.2 dB, return loss better than 20 dB in the pass band and high than 28 dB suppression at harmonic frequencies.

Originality/value

This Ka-band MMIC filter with harmonic suppression is attractive for the millimeter-wave system.

Details

Circuit World, vol. 46 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 11 November 2013

Davide Ramaccia, Filiberto Bilotti, Alessandro Toscano and Lucio Vegni

– The purpose of this paper is to design simple and high-performing screens capable to separate circularly polarized electromagnetic waves in Ku band from the ones in Ka band.

Abstract

Purpose

The purpose of this paper is to design simple and high-performing screens capable to separate circularly polarized electromagnetic waves in Ku band from the ones in Ka band.

Design/methodology/approach

The proposed screen consists of an inductive double resonant element FSS, i.e. a regular array of circular holes in a metal thick plate, in order to grant the robustness to mechanical stress for antenna applications in extreme conditions.

Findings

The proposed design of a multi-band frequency selective surface (FSS) is able to separate circularly polarized electromagnetic waves in Ku band from the ones in Ka band.

Originality/value

The paper shows the capabilities of a novel FSS that combine the transmission properties of two simple FSSs which allows us to achieve an interesting behaviour in three typical bands of the satellite communications.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 July 2021

Deepinder Singh Wadhwa, Praveen Kumar Malik and Jaspal Singh Khinda

A compact low-cost antenna structure is proposed to augment the impedance-bandwidth in mm-wave range. Beside it, the paper also aimed to enhance high gain for n260 and n261-bands…

Abstract

Purpose

A compact low-cost antenna structure is proposed to augment the impedance-bandwidth in mm-wave range. Beside it, the paper also aimed to enhance high gain for n260 and n261-bands, suitable for futuristic communication systems.

Design/methodology/approach

Design consists of radiating patch and a partial ground plane with semi-circle arc for smooth flow of current. The lower corners of patch are gradually clipped away to make the patch nearly elliptical. Further, two tilted slots at an angle α = 15° are etched at the edges of the patch to augment bandwidth for mm-wave range. These slots divert the periphery current of semi elliptical patch towards center portion of antenna which ensures the participation in radiation of central portion of patch. The upper corners are also clipped away to limit the copper losses and smoothly flow of current. The proposed antenna is designed using HFSS and it is structured on inexpensive FR4 substrate of size 27.5 × 20 mm2.

Findings

It supports enormous −10 dB bandwidth of 5.86–40GHz (148.89%) even though use of high loss-tangent material and high gain for 28 GHz (27.50–28.35 GHz) n261–band and 37 GHz (37–38.6 GHz) and 39 GHz (38.6–40GHz) n260–bands with a peak-gain of 8.76 dBi, 10.8 dBi and 9.92 dBi, respectively.

Originality/value

The proposed methodology of design is very useful to enhance impedance bandwidth to cover all C–, X–, Ku–, K– and Ka–band even though use of low cost material with high loss tangent. In recent literature, the designs were implemented with a costly material and having very low loss tangent and covers partial suggest bands.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 December 2021

Reza Kazemi, Mohsen Fallah, Bijan Abbasi and Seyyed Hossein MohseniArmaki

The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR…

Abstract

Purpose

The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR) applications in Ku frequency band.

Design/methodology/approach

A compact design of a rectangular microstrip patch antenna array using multilayered dielectric structure is presented in Ku-band for advanced broadband SAR systems. In this design, stepped pins are used to connect the microstrip feed lines to the radiating patches.

Findings

The simulation and fabrication results of the multilayered antenna and a 1×16-element linear array of the antenna with Taylor amplitude distribution in the feeding network are presented. The antenna element has a 10-dB impedance bandwidth of more than 26%, and the linear array shows reduction in bandwidth percentage (about 15.4%). Thanks to Taylor amplitude tapering, the side lobe level (SLL) of the array is lower than −24 dB. The maximum measured gains of the antenna element and the linear array are 7 and 19.2 dBi at the center frequency, respectively.

Originality/value

In the communication systems, a high gain narrow beamwidth radiation pattern achieved by an array of multiple antenna elements with optimized spacing is a solution to overcome the path loss, atmospheric loss, polarization loss, etc. Also, wideband characteristics and compact size are desirable in satellite and SAR systems. This paper provides the combination of these features by microstrip structures.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 September 2002

46

Abstract

Details

Circuit World, vol. 28 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 29 June 2010

Arjan Durresi, Leonard Barolli, Akio Koyama and Makoto Takizawa

Satellite networking will be an important component of future ubiquitous communications systems. Satellite networks will be especially useful to interconnect remote sensor…

Abstract

Purpose

Satellite networking will be an important component of future ubiquitous communications systems. Satellite networks will be especially useful to interconnect remote sensor networks. Therefore, satellite networks should provide the needed QoS, differentiation of services and at the same time keep the required scalability. The purpose of this paper is to propose a new Diffserv‐based scheme of bandwidth allocation during congestion, called proportional allocation of bandwidth (PAB).

Design/methodology/approach

The paper suggests a method for implementing PAB without storing per‐flow state, which makes the scheme scalable and simple and shows, by simulation, the advantages of using PAB in IP satellite networks.

Findings

The paper finds that PAB can be used in geostationary earth orbit, MEO and low earth orbit satellite networks. In PAB, during congestion all flows get a share of IP available bandwidth, which is in proportion to their subscribed information rate.

Originality/value

The simulations described in this paper show that the performance of PAB scheme is good on congested satellite networks.

Details

International Journal of Pervasive Computing and Communications, vol. 6 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 12 November 2021

Mohammed Amin Rabah and Bekhti Mohammed

The present work aims to analyze the performance of a newly designed graphene-based patch antenna by varying the chemical potential in graphene sheet, using the CST Microwave…

Abstract

Purpose

The present work aims to analyze the performance of a newly designed graphene-based patch antenna by varying the chemical potential in graphene sheet, using the CST Microwave Studio ® software. This study mainly seeks to discuss and assess the advantage of using graphene, instead of copper, as the radiating patch. It should be noted that graphene is a new material that possesses unique properties. Its parameters are optimized for the purpose of introducing it in satellite technology.

Design/methodology/approach

The use of graphene as a radiating patch of space technology applications, where a polygonal graphene patch antenna element is designed by the CST Microwave Studio ® software with Taconic RF-41 substrate to resonate in the satellite bands.

Findings

Analysis of a graphene patch sheet by a variation in the chemical potential to ensure operation in a space environment.

Originality/value

The increase in the chemical potential for a graphene patch antenna has shown a prominent increase in the values of the gain. A new contribution, by the combination of the antenna performance improvement techniques and the use of graphene as a radiating patch of space technology applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 November 2019

Kanchana D., Radha Sankararajan, Sreeja B.S. and Manikandan E.

A novel low profile frequency selective surface (FSS) with a band-stop response at 10 GHz is demonstrated. The purpose of this designed FSS structure is to reject the X-band (8-12…

Abstract

Purpose

A novel low profile frequency selective surface (FSS) with a band-stop response at 10 GHz is demonstrated. The purpose of this designed FSS structure is to reject the X-band (8-12 GHz) for the application of shielding. The proposed FSS structure having the unit cell dimension of 8 × 8 mm2, the miniaturization of the FSS unit cell in terms of λ0 is 0.266 λ0 × 0.266 λ0, where λ0 is free space wavelength. The designed FSS provides 4 GHz bandwidth with insertion loss of 15 dB. The transverse electric (TE) and transverse magnetic (TM) modes of the proposed design are same because of polarization independent characteristics and hold the angularly stable frequency response for both TE and TM mode polarization. Both the simulation and measurement results are in good agreement to each other.

Design/methodology/approach

The proposed FSS design contains square-shaped PEC material, which is placed on the substrate and the shape of the circle and rectangle is etched over the PEC material. The PEC material of the patch dimension is 0.0175 mm. The substrate used for the proposed design is FR4 lossy with the thickness of 0.8 mm and permittivity εr = 4.3 having a loss tangent of 0.02.

Findings

To find a new design and miniaturized FSS structure is discussed.

Originality/value

100%

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 47