Search results

1 – 10 of over 2000
Article
Publication date: 18 January 2013

P.B. Kashid, D.C. Kulkarni, V.G. Surve and Vijaya Puri

The purpose of this paper is to study thickness dependent variation in microwave properties of the MgxMn(0.9−x)Al0.1Zn0.8Fe1.2O4 (x=0.8, 0.9) thick films and enhancement of power…

Abstract

Purpose

The purpose of this paper is to study thickness dependent variation in microwave properties of the MgxMn(0.9−x)Al0.1Zn0.8Fe1.2O4 (x=0.8, 0.9) thick films and enhancement of power efficiency of Ag thick film EMC patch antenna.

Design/methodology/approach

X‐band microwave properties of the MgxMn(0.9−x)Al0.1Zn0.8Fe1.2O4 (x=0.8, 0.9) thick films were measured by superstrate technique using Ag thick film EMC patch antenna as the resonant element. The complex permittivity and permeability of these thick films were also measured by this technique. The microwave response of the EMC patch, complex permeability and permittivity of Mg0.8Mn0.1Al0.1Zn0.8Fe1.2O4 and Mg0.9Al0.1Zn0.8Fe1.2O4 thick films and their thickness dependency were investigated.

Findings

The XRD patterns reveal the cubic spinel crystal system was obtained for both compositions. The crystallite size obtained was 134.68 nm for Mg0.8Mn0.1Al0.1Zn0.8Fe1.2O4 and 155.99 nm for Mg0.9Al0.1Zn0.8Fe1.2O4 The superstrate technique has been used successfully to evaluate the complex permittivity and permeability of the ferrite thick films in the X band. The EMC patch also show thickness and composition dependent frequency agility and enhancement of power efficiency.

Originality/value

The complex permeability of MgxMn(0.9−x)Al0.1Zn0.8Fe1.2O4 (x=0.8, 0.9) thick films measured by superstrate technique is reported in this paper. The superstrate of MgxMn(0.9−x)Al0.1Zn0.8Fe1.2O4 (x=0.8, 0.9) thick films makes the Ag thick film EMC patch antenna frequency agile and power amplification is obtained.

Details

Microelectronics International, vol. 30 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 August 2010

D.C. Kulkarni and Vijaya Puri

The aim of this paper is to investigate microwave Ku band absorbance, complex permittivity, and permeability of SrFe12O19 thick films by a simple and novel waveguide technique.

Abstract

Purpose

The aim of this paper is to investigate microwave Ku band absorbance, complex permittivity, and permeability of SrFe12O19 thick films by a simple and novel waveguide technique.

Design/methodology/approach

The glass frit free or fritless strontium hexaferrite thick films were formulated on alumina by screen printing technique from the powder synthesized by chemical co precipitation method for pH 11 adjusted during the reaction. The 13‐18 GHz frequency band microwave absorbance of the SrFe12O19 thick films by a simple waveguide method. The complex permittivity and permeability of strontium hexaferrite thick films was measured by voltage standing wave ratio technique.

Findings

SrFe12O19 thick films show high ∼80 percent absorbance in the whole 13‐18 GHz frequency band. The thickness dependant microwave properties of strontium hexaferrite thick films were observed. The real permittivity ε′ lies in between eight and 35 with the variation in thickness of the thick film SrFe12O19. The real microwave permeability μ′ of strontium hexaferrite thick films lies in the range 1.12‐6.41. The resonance type behavior was observed at frequency 14.3 GHz. The SrFe12O19 thick film of thickness 30 μm could be a wide band (∼5,000 MHz) absorber with absorbance ∼87 percent for the whole 13‐18 GHz frequency band.

Originality/value

The complex permeability of strontium hexaferrite thick films was measured by simple novel waveguide method. The high absorbance (∼87 percent) of thick film SrFe12O19 over a broad band ∼5,000 MHz will be useful in achieving RAM coatings required for 13‐18 GHz frequency band.

Details

Microelectronics International, vol. 27 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 November 2012

Valdemar Melicher and Peter Sergeant

This paper aims to derive a simple and effective but still a reasonably accurate model for electromagnetic problems with hysteretic magnetic properties and/or induced currents in…

1811

Abstract

Purpose

This paper aims to derive a simple and effective but still a reasonably accurate model for electromagnetic problems with hysteretic magnetic properties and/or induced currents in heterogeneous regions in 2D, meant particularly for non‐destructive testing (NDT) of steel cables by eddy‐currents.

Design/methodology/approach

It is assumed that the diffusion of electromagnetic fields in a heterogeneous cable, which consists of many strands, can be described by the Maxwell equations with periodically oscillating coefficients. A computationally efficient model can then be derived. The idea behind this is to replace the heterogeneous material in the cross‐section by a fictitious homogeneous one, whose behaviour at the macroscopic level is a good approximation of the one of the composite material. Such a homogenized model is obtained by employing the two‐scale convergence.

Findings

The model is validated based on experimental electromagnetic data from a steel cable (measured magnetic hysteresis loops) to show that the model is applicable for NDT of cables. The model is useful for studying NDT of cables, both for excitation at low frequency (where changes in magnetic properties are investigated) and at higher frequency (eddy current testing). It is valid for a wide range of amplitudes and frequencies.

Originality/value

From the mathematical point of view the model incorporated a non‐local boundary condition that has to be included in the analysis. From the engineering point of view, by solving an inverse problem based on this model and on measured hysteresis loops at several frequencies, a broader range of defects in the cable can be detected.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 January 2017

Chengzhu Xiu, Liang Ren, Hongnan Li and Ziguang Jia

Magnetic permeability variations of ferromagnetic materials under elastic stress offer the potential to monitor tension based on the inverse magnetostrictive effect. The purpose…

Abstract

Purpose

Magnetic permeability variations of ferromagnetic materials under elastic stress offer the potential to monitor tension based on the inverse magnetostrictive effect. The purpose of this paper is to propose an innovative self-inductance tension eddy current sensor to detect tension.

Design/methodology/approach

The effectiveness of conventional elasto-magnetic (EM) sensor is limited during signal detection, due to its complex sensor structure, which includes excitation and induction coils. In this paper, a novel self-inductance tension eddy current sensor using a single coil is presented.

Findings

The output signal was analyzed through oscilloscope in the frequency domain and via self-developed data logger in the time domain. Experimental results show the existence of a linear relationship between voltage across the sensor and tension. The sensor sensitivity is dependent on operating conditions, such as current and frequency of the input signal.

Practical implications

The self-inductance sensor has great potential for replacing conventional EM sensor due to its low cost, simple structure, high precision and good repeatability in tension detection.

Originality/value

A spilt sleeve structure provides a higher permeability path to magnetic field lines than a non-sleeve structure, thus reducing the loss of magnetic field. The self-developed data logger improves sensitivity and signal-to-noise ratio of sensor. The novel sensor, as a replacement of the EM sensor, can easily and accurately monitor the tension force.

Details

Sensor Review, vol. 37 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 May 2021

Satish Geeri and Aditya Kolakoti

The purpose of the present work is to fabricate composite with strong absorbing nature and with more strength. The usage of wireless communication is increasing day by day…

Abstract

Purpose

The purpose of the present work is to fabricate composite with strong absorbing nature and with more strength. The usage of wireless communication is increasing day by day, electromagnetic absorbing material is required to reduce this pollution. In the present experimental investigation, composites were fabricated for zero and 45° fiber orientation and as a filler material of Multiwall Carbon Nanotubes (MWCNTs) for the proposed percentage in the composites. Microwave absorbing properties were investigated for both perfect electric conductor (PEC)-backed composites and without PEC-backed composites.

Design/methodology/approach

The electromagnetic absorbing performance was analyzed based on complex permeability, complex permittivity, dielectric tangent and magnetic tangent losses. The experimentation was done by Vector Network Analyzer in the frequency range of 8.2 to 12.4 GHz by X-band. The surface morphological study was done. The mechanical and thermal properties are also investigated for these composites.

Findings

By investigating the experimental values, the induced percentage of MWCNTs and PEC of composites affects the electromagnetic and microwave absorption properties of the composites. The microwave absorption properties improved when the composites were able to absorb wide bandwidth and low reflection loss. The best results are obtained for PEC-backed composites for 5%, which is about −43.56 dB at 11.1 GHz compared to without PEC-backed composites. The reflection loss is developed by the dielectric loss initiated from MWCNTs and by PEC.

Originality/value

To the best of the authors’ knowledge, no work was reported on hand lay-up method and PEC-backed composites in electromagnetic absorption properties with regression analysis.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 May 2019

Shogo Fujita and Hajime Igarashi

The tensor complex permeability of a multi-turn coil with elliptic cross-section is analytically expressed. In field analysis, a multi-turn coil can be modeled by the uniform…

Abstract

Purpose

The tensor complex permeability of a multi-turn coil with elliptic cross-section is analytically expressed. In field analysis, a multi-turn coil can be modeled by the uniform material that has the present tensor complex permeability. It is shown that the frequency characteristic of the present tensor complex permeability is in good agreement with that evaluated by finite element method applied to a unit cell of the multi-turn coil region.

Design/methodology/approach

The authors introduce a new method to evaluate the complex permeability of a multi-turn rectangular coil. To obtain the complex permeability of a rectangular coil in a closed form, it is approximated as an elliptic coil. Because the rectangular coil has different complex permeabilities in the vertical and horizontal directions, the complex permeability have to be defined in a tensor form. It suffices to discretize the coil region into rather coarse finite elements without considering the skin depth in contrast to the conventional finite element method.

Findings

The proposed method is shown to give the impedance of multi-turn coils which is in good agreement with results obtained by the conventional finite element (FE) analysis. By extending the proposed approach, the authors can easily perform 3D FE analysis without difficulty in discretization of the coil region with fairly fine finite elements. Moreover, they found that the approximation of rectangular coils as the elliptic coils is valid for analysis of quasi-static fields using this homogenization method.

Originality/value

The novelty of this study is in the approximation of the rectangular coils with elliptic coils, and the complex permeability for them is formulated here in a closed form. The proposed formula includes that for the round coils. Using the present method, the authors analyze the rectangular coils without fine discretization.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 June 2024

Zhicai Yu, Lili Wang, Yiwei Shao, Yun Liu, Yuhang Zhao, Yi Qin, Yingzi Zhang and Hualing He

This study aims to fabricate a novel electromagnetic interference (EMI) shielding composite aerogel with both thermal insulation and high temperature warning functions.

Abstract

Purpose

This study aims to fabricate a novel electromagnetic interference (EMI) shielding composite aerogel with both thermal insulation and high temperature warning functions.

Design/methodology/approach

An emerging bio-based polypyrrole (PPy) gel/Fe3O4/calcium alginate (PFC) EMI shielding composite aerogel was prepared by freeze-drying and in situ polymerization method. First, Fe3O4/calcium alginate (CA) aerogel was obtained by freeze-drying the Fe3O4/CA mixture. Then, PPy/Fe3O4/CA was obtained by synthesizing PPy on the surface of CA/Fe3O4 aerogel through in situ polymerization. Finally, PPy/Fe3O4/CA was immersed in porphyrin solution (cross-linking agent) to get the final PFC EMI shielding composite aerogel.

Findings

Due to the matched impedance between Fe3O4 and PPy, the EMI shielding performance of PFC composite aerogel can reach up to −8 dB. In addition, the PFC EMI shielding composite aerogel also shows excellent self-extinguishing and thermal insulation properties. After leaving the flame, the burning PFC aerogel is quickly extinguished. When the PFC aerogel is placed on the heating plate at 230 °C, the temperature on the side of the aerogel away from the heating plate is only 90.3 °C after 5 min of heating. The electrical resistance of the PFC composite aerogel can be reduced from 3.62 × 104 O to 5 × 102 O to trigger the warning light after 3 s of exposure to the alcohol lamp flame. This reversible thermal resistance response characteristic can be used to give an early warning signal when the PFC encounters high temperature or flame.

Originality/value

This work provides a novel strategy for designing a multifunctional EMI shielding composite aerogel with repeatable high temperature warning performance. This PFC composite aerogel shows potential applications in the prevention of material combustion in high temperature electromagnetic environments.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 May 2009

Hanif Tavakoli, Dierk Bormann, David Ribbenfjärd and Göran Engdahl

For efficient magnetic field calculations in electrical machines, the hysteresis and losses in laminated electrical steel must be modeled in a simple and reliable way. The purpose…

Abstract

Purpose

For efficient magnetic field calculations in electrical machines, the hysteresis and losses in laminated electrical steel must be modeled in a simple and reliable way. The purpose of this paper is to investigate and discuss the potential of a simple complexpermeability model.

Design/methodology/approach

A frequency dependent complexpermeability model as well as a more detailed model (describing hysteresis, classical eddy current effects, and excess losses separately) are compared to single‐sheet measurements on laminated electrical steel. It is discussed under which circumstances the simple complexμ model is an adequate substitute for the more detailed model.

Findings

A satisfactory agreement of the simple complexμ model was found with both detailed model and measurements, improving with increasing frequencies. This is true not only for the effective permeability function, but holds also for the detailed HB characteristics (hysteresis).

Originality/value

It is demonstrated that the complexμ model is a reliable and convenient starting point for the estimation of flux distribution and losses in complicated magnetic core geometries.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Marek Golebiowski

The purpose of this paper is to develop the method of taking the eddy current losses in the laminated magnetic circuits into account during implicit transient calculations. The…

Abstract

Purpose

The purpose of this paper is to develop the method of taking the eddy current losses in the laminated magnetic circuits into account during implicit transient calculations. The nonlinear magnetization characteristic of iron and the hysteresis losses can also be considered in the simulations done with the developed method.

Design/methodology/approach

The paper presents complex equivalent magnetic permeability derived from the presumed angular frequency in a laminated magnetic circuit. On this basis, the synthesis of a magnetic permeability as a function of the Laplace variable “s” is presented. After transformation of the variable “s” to a variable “z” of the Z transformation, it is possible to conduct discrete time calculation of transient states of magnetic circuits including the eddy current losses. An iterative process is developed to take the saturation of the magnetic circuit in these calculations into account. As regards hysteresis losses, the scalar model of magnetic hysteresis by Juhani Tellinen was implemented. The new method is validated by calculations of a two-coil transformer.

Findings

It is important to take into account the losses in sheet metal directly in the implicit transient calculations. This possibility is provided by the presented method based on the synthesis of the equivalent magnetic permeability μ^(s). The presented method was proved to be correct and efficient. The calculated sheet metal losses were compared with the results presented in literature. Good conformance of results was attained.

Practical implications

The method enables calculation of eddy current and hysteresis losses in laminated magnetic circuits during calculations of transient states. It does not need, unlike the previous methods, previously provided information (“a priori”) about the content of higher harmonics in waveforms. The method takes into account mutual dependence of transient waveforms of currents in the analysed system and losses of laminated magnetic circuit, expressed by eddy currents and hysteresis losses. Its implementation comes down to using in calculations a filter of the IIR type and corresponds to its calculation complexity. The author plans to use the presented method in the finite elements method transient calculations.

Originality/value

A new approach is a synthesis of the equivalent magnetic permeability in Laplace domain, which creates an equivalent RC circuit for permeability. Analytic equations for parameters of this equivalent circuit are original. A method for considering nonlinear magnetization characteristic and hysteresis losses was presented. In calculations of transient states of systems with magnetic circuits, one can use the developed equivalent circuit of magnetic permeability in a form of the IIR filter. Operator magnetic permeability includes fractional derivative of Laplace’s variable “vs”. Therefore, the equivalent IIR filter includes “history” of the processes that take place in the laminated magnetic circuit to the current, calculated time moment. This “history” in terms of its content is limited only by the degree of the applied IIR filter. It enables to calculate “step by step”, without previous (“a priori”) knowledge about harmonic components of the whole waveforms. It was necessary in the previously used methods, when determining parameters of magnetic permeability. The method proposed in the paper allows for calculations with taking into account direct dependence of an electric part of the system on its magnetic part.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2024

Kunpeng Shi, Guodong Jin, Weichao Yan and Huilin Xing

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel…

Abstract

Purpose

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel machine-learning method for the rapid estimation of permeability of porous media at different deformation stages constrained by hydro-mechanical coupling analysis.

Design/methodology/approach

A convolutional neural network (CNN) is proposed in this paper, which is guided by the results of finite element coupling analysis of equilibrium equation for mechanical deformation and Boltzmann equation for fluid dynamics during the hydro-mechanical coupling process [denoted as Finite element lattice Boltzmann model (FELBM) in this paper]. The FELBM ensures the Lattice Boltzmann analysis of coupled fluid flow with an unstructured mesh, which varies with the corresponding nodal displacement resulting from mechanical deformation. It provides reliable label data for permeability estimation at different stages using CNN.

Findings

The proposed CNN can rapidly and accurately estimate the permeability of deformable porous media, significantly reducing processing time. The application studies demonstrate high accuracy in predicting the permeability of deformable porous media for both the test and validation sets. The corresponding correlation coefficients (R2) is 0.93 for the validation set, and the R2 for the test set A and test set B are 0.93 and 0.94, respectively.

Originality/value

This study proposes an innovative approach with the CNN to rapidly estimate permeability in porous media under dynamic deformations, guided by FELBM coupling analysis. The fast and accurate performance of CNN underscores its promising potential for future applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000