Search results

1 – 10 of 287
Article
Publication date: 3 October 2019

Mikhail A. Sheremet, Hakan F. Öztop and Nidal Abu-Hamdeh

The purpose of this study is to work on heat transfer enhancement within different engineering cavities is the major aim of most technical solutions. Such intensification can be…

Abstract

Purpose

The purpose of this study is to work on heat transfer enhancement within different engineering cavities is the major aim of most technical solutions. Such intensification can be obtained by using “smart” liquids known as nanoliquids and solid fins. Therefore, free convective thermal transmission within square nanoliquid chamber under the influence of complex fins is studied. The considered fins are the combination of wall-mounted adiabatic fin and an adiabatic block over this fin.

Design/methodology/approach

Influences of the Rayleigh number, location of the local adiabatic block and nanoparticles concentration on liquid motion and energy transport are studied. Finite difference technique was used to solve the governing equations.

Findings

It has been ascertained that the energy transport intensification can be reached for the middle position of this local block within the cavity.

Originality/value

The main originality of this work is to use intermittent block in a nanofluid filled cavity under differentially heated conditions. One constant and location of one of the passive element is constant and other one is fixed, which is the intermittent block, is used to control heat and fluid flow. Thus, distance between blocks is allowed to control of the velocity and kinetic energy. In this way, temperature distribution also can be controlled inside the square cross-sectional closed space. Another originality of the work is to use nanoparticle added main flow for this geometry. Thus, energy efficiency can be controlled via adiabatic intermittent blocks without spending any extra energy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2018

Ammar I. Alsabery, Tahar Tayebi, Ali J. Chamkha and Ishak Hashim

The purpose of this paper is to study problem of conjugate MHD natural convection of Al2O3-water nanofluid in a square cavity with conductive inner block using Buongiorno’s…

Abstract

Purpose

The purpose of this paper is to study problem of conjugate MHD natural convection of Al2O3-water nanofluid in a square cavity with conductive inner block using Buongiorno’s two-phase model numerically.

Design/methodology/approach

An isothermal heater is placed on the left wall of the square cavity, while the right wall is maintained at a constant cold temperature. The horizontal top and bottom walls are kept adiabatic. The boundaries of the annulus are assumed to be impermeable, the fluid within the cavity is a water-based nanofluid having Al2O3 nanoparticles. The Boussinesq approximation is applicable. The governing equations subject to the boundary conditions are solved using the finite difference method.

Findings

Numerical results are presented graphically in the form of streamlines, isotherms and nanoparticles distributions as well as the local and average Nusselt numbers. The results show that the effect of the nanoparticles addition on the average Nusselt number is essential for low Rayleigh, high Hartmann and high values of length ratio when attenuated the convective flow.

Originality/value

According to exist studies and to the authors’ best knowledge, so far, there have been no studies of conjugate natural convection of Al2O3-water nanofluid in a square cavity with a conductive inner block using Buongiorno’s two-phase model with the effect of the magnetic field. Thus, the authors believe that this work is new and valuable. The aim of this study is to investigate the MHD natural convection of Al2O3-water nanofluid in a square cavity with conductive inner block using Buongiorno’s two-phase model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2018

Kalidasan K., R. Velkennedy, Jan Taler, Dawid Taler, Pawel Oclon and Rajesh Kanna P.

This study aims to perform a numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature under laminar flow…

Abstract

Purpose

This study aims to perform a numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature under laminar flow conditions. The geometry of the enclosure contains two isothermal blocks placed equidistant along the streamwise direction. The top wall is assumed to be cold (low temperature). The bottom wall temperature is either kept as constant or sinusoidally varied with time. The vertical walls are considered as adiabatic. The flow is diagonally upwards and assisted by the buoyancy force. The inlet is positioned at the bottom of the left wall, and the outlet is placed at the top of the right wall. The parameters considered in this paper are Rayleigh number (104-106), Prantdl number (0.71), amplitude of temperature oscillation (0-0.5) and the period (0.2). The effects of these parameters on heat transfer and fluid flow inside the open cavity are studied. The periodic results of fluid flow are illustrated with streamlines and the heat transfer is represented by isotherms and time-averaged Nusselt number. By virtue of increasing buoyancy, the heat transfer accelerates with an increase in the Rayleigh number. Also, the heat transfer is intensive with an increase in the bottom wall temperature.

Design/methodology/approach

The momentum and energy equations are solved simultaneously. The energy equation (3) is initially solved using the alternating direction implicit (ADI) method. The results of the energy equation are updated into the vorticity equation. The unsteady vorticity transport equation is also solved using the ADI method. Dimensionless time step equal to 0.01 is used for high Ra (105 and 106) and 0.001 is used for low Ra (104). Convergence criteria of 10−5 is used during the vorticity, stream function and temperature calculations, as the sum of error should be very small.

Findings

Numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature is performed under laminar flow condition. The effect of the isothermal blocks on the heat transfer is analyzed for different Rayleigh numbers and the following conclusions are arrived. The hydrodynamic blockage effect is subdued by the isothermal heating of square blocks. Based on the streamline diagrams, it is found that the formation of vortices is greatly influenced by the Rayleigh number when all the walls are exposed to a constant wall temperature. The influence of amplitude on the heat transfer is remarkable on the wall exposed to oscillating temperature and is subtle on the opposite static cold wall. The heat transfer increases with an increase in the Rayleigh number and temperature.

Research limitations/implications

Flow is assumed to be two-dimensional and laminar subject to oscillatory boundary condition. The present investigation aims to study natural convection inside the cavity filled with air whose bottom wall is subject to time-variant temperature. The buoyancy is further intensified through two isothermal square blocks placed equidistant along the streamwise direction at mid-height.

Originality/value

The authors have developed a CFD solver to simulate the situation. Effect of Rayleigh number subject to oscillatory thermal boundary condition is simulated. Streamline contour and isotherm contour are presented. Local and average Nusselt numbers are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 December 2020

Sivaraj Chinnasamy, S. Priyadharsini and Mikhail Sheremet

This study/paper aims to deal with thermal convection and entropy production of a ferrofluid in an enclosure having an isothermally warmed solid body placed inside. It should be…

Abstract

Purpose

This study/paper aims to deal with thermal convection and entropy production of a ferrofluid in an enclosure having an isothermally warmed solid body placed inside. It should be noted that this research deals with a development of passive cooling system for the electronic devices.

Design/methodology/approach

The domain of interest is a square chamber of size L including a rectangular solid block of sizes l1 and l2. Thermal convection of ferrofluid (water–Fe3O4 nanosuspension) is analyzed within this enclosure. The solid body is considered to be isothermal with temperature Th and also its area is L2/9. The vertical borders are cold with temperature Tc and the horizontal boundaries are adiabatic. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the semi-implicit method for pressure-linked equations algorithm on a uniformly staggered mesh. The influence of nanoparticles volume fraction, aspect ratio of the solid block and an irreversibility ratio on energy transport and flow patterns are examined for the Rayleigh number Ra = 107.

Findings

The results show that the nanoparticles concentration augments the thermal transmission and the entropy production increases also, while the augmentation of temperature difference results in a diminution of entropy production. Finally, lower aspect ratio has the significant impact on heat transfer, isotherms, streamlines and entropy.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze convective energy transport and entropy generation in a chamber with internal block. To the best of the authors’ knowledge, the effects of irreversibility ratio are scrutinized for the first time. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer and entropy production in enclosures with internal isothermal blocks, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, electronics, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 July 2021

Sivaraj Chinnasamy, Vignesh E. and Mikhail Sheremet

The study aims to investigate magnetohydrodynamics thermal convection energy transference and entropy production in an open chamber saturated with ferrofluid having an isothermal…

Abstract

Purpose

The study aims to investigate magnetohydrodynamics thermal convection energy transference and entropy production in an open chamber saturated with ferrofluid having an isothermal solid block.

Design/methodology/approach

Analysis of thermal convection phenomenon was performed for an open chamber saturated with a nanofluid having an isothermal solid unit placed inside the cavity with various aspect ratios. The left border temperature is kept at Tc. An external cooled nanofluid of fixed temperature Tc penetrates into the domain from the right open border. The nanofluid circulation is Newtonian, incompressible, and laminar. The uniform magnetic field of strength B at the tilted angle of γ is applied. The finite volume technique is used to work out the non-linear equations of liquid motion and energy transport. For Rayleigh number (Ra=1e+7), numerical simulations were executed for varying the solid volume fractions of the nanofluid (ϕ = 0.01–0.04), the aspect ratios of a solid body (As = 0.25–4), the Hartmann number (Ha = 0–100), the magnetic influence inclination angle (γ = 0–π/2) and the non-dimensional temperature drop (Ω = 0.001–0.1) on the liquid motion, heat transference and entropy production.

Findings

Numerical outcomes are demonstrated by using isolines of temperature and stream function, profiles of mean Nusselt number and entropy generations. The results indicate that the entropy generation rate and mean Nu can be decreased with an increase in Ha. The inner solid block of As = 0.25 reflects the maximum heat transfer rate in comparison with other considered blocks. The addition of nano-sized particles results in a growth of energy transport and mean entropy generations.

Originality/value

An efficient computational technique has been developed to solve natural convection problem for an open chamber. The originality of this research is to scrutinize the convective transport and entropy production in an open domain with inner body. The outcomes would benefit scientists and engineers to become familiar with the investigation of convective energy transference and entropy generation in open chambers with inner bodies, and the way to predict the energy transference strength in the advanced engineering systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 September 2019

Tahar Tayebi and Ali J. Chamkha

The purpose of this paper is to study the influence of magnetic field on entropy generation and natural convection inside an enclosure filled with a hybrid nanofluid and having a…

Abstract

Purpose

The purpose of this paper is to study the influence of magnetic field on entropy generation and natural convection inside an enclosure filled with a hybrid nanofluid and having a conducting wavy solid block. Also, the effect of fluid–solid thermal conductivity ratio is investigated.

Design/methodology/approach

The governing equations that are formulated in the dimensionless form are discretized via finite volume method. The velocity–pressure coupling is assured by the SIMPLE algorithm. Heat transfer balance is used to verify the convergence. The validation of the numerical results was performed by comparing qualitatively and quantitatively the results with previously published investigations.

Findings

The results indicate that the magnetic field and the conductivity ratio of the wavy solid block can significantly affect the dynamic and thermal field and, consequently, the heat transfer rate and entropy generation because of heat transfer, fluid friction and magnetic force.

Originality/value

To the best of the authors’ knowledge, the present numerical study is the first attempt to use hybrid nanofluid for studying the entropy generation because of magnetohydrodynamic natural convective flow in a square cavity with the presence of a wavy circular conductive cylinder. Irreversibilities due to magnetic effect are taken into account. The effect of fluid–solid thermal conductivity ratio is considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 March 2021

Harun Zontul, Hudhaifa Hamzah and Besir Sahin

This paper aims to exhibit a numerical study to analyze the influence of a periodic magnetic source on free convection flow and entropy generation of a ferrofluid in a baffled…

Abstract

Purpose

This paper aims to exhibit a numerical study to analyze the influence of a periodic magnetic source on free convection flow and entropy generation of a ferrofluid in a baffled cavity. In this study, ferrofluid nanofluid was selected due to its ability to image magnetic domain structures within the cavity. The non-uniform magnetic source is considered as a sinusoidal distribution in the vertical direction.

Design/methodology/approach

The finite volume technique is used to evaluate the steady two-dimensional partial differential equations that govern the flow with its corresponding boundary conditions.

Findings

The obtained results indicate that a significant increase in the average Nusselt number can be achieved with the use of the periodic magnetic source instead of a uniform case. In addition, the effectiveness of the adiabatic baffle notably depends on its position and Rayleigh number. Regardless of the values of period and Hartmann numbers, the periodic magnetic source has a higher entropy generation and lower Bejan number than the uniform magnetic source.

Originality/value

The novelty of this research lies in applying a periodic magnetic source on the natural convection of ferrofluids in a baffled cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 2 November 2023

H.A. Kumara Swamy, Sankar Mani, N. Keerthi Reddy and Younghae Do

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of…

Abstract

Purpose

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of the devices. In several industrial applications, the structure of thermal device is cylindrical shape. In this regard, this paper aims to explore the impact of isothermal cylindrical solid block on nanofluid (Ag – H2O) convective flow and entropy generation in a cylindrical annular chamber subjected to different thermal conditions. Furthermore, the present study also addresses the structural impact of cylindrical solid block placed at the center of annular domain.

Design/methodology/approach

The alternating direction implicit and successive over relaxation techniques are used in the current investigation to solve the coupled partial differential equations. Furthermore, estimation of average Nusselt number and total entropy generation involves integration and is achieved by Simpson and Trapezoidal’s rules, respectively. Mesh independence checks have been carried out to ensure the accuracy of numerical results.

Findings

Computations have been performed to analyze the simultaneous multiple influences, such as different thermal conditions, size and aspect ratio of the hot obstacle, Rayleigh number and nanoparticle shape on buoyancy-driven nanoliquid movement, heat dissipation, irreversibility distribution, cup-mixing temperature and performance evaluation criteria in an annular chamber. The computational results reveal that the nanoparticle shape and obstacle size produce conducive situation for increasing system’s thermal efficiency. Furthermore, utilization of nonspherical shaped nanoparticles enhances the heat transfer rate with minimum entropy generation in the enclosure. Also, greater performance evaluation criteria has been noticed for larger obstacle for both uniform and nonuniform heating.

Research limitations/implications

The current numerical investigation can be extended to further explore the thermal performance with different positions of solid obstacle, inclination angles, by applying Lorentz force, internal heat generation and so on numerically or experimentally.

Originality/value

A pioneering numerical investigation on the structural influence of hot solid block on the convective nanofluid flow, energy transport and entropy production in an annular space has been analyzed. The results in the present study are novel, related to various modern industrial applications. These results could be used as a firsthand information for the design engineers to obtain highly efficient thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 287