Search results

1 – 10 of 385
Article
Publication date: 1 June 2015

M. A. Sheremet and Ioan Pop

Steady-state free convection heat transfer in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno

Abstract

Purpose

Steady-state free convection heat transfer in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno has been numerically analyzed. The paper aims to discuss this issue.

Design/methodology/approach

The nanofluid model takes into account the Brownian diffusion and thermophoresis effects. The governing equations formulated in terms of the vorticity-stream function variables were solved by finite difference method.

Findings

It has been found that the average Nusselt number is an increasing function of the Rayleigh and Lewis numbers and a decreasing function of Brownian motion, buoyancy-ratio and thermophoresis parameters. At the same time the average Sherwood number is an increasing function of the Rayleigh and Lewis numbers, Brownian motion and thermophoresis parameters and a decreasing function of buoyancy-ratio parameter.

Originality/value

The present results are new and original for the heat transfer and fluid flow in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2017

Ioan Pop, Mikhail Sheremet and Dalia Sabina Cimpean

The main purpose of this numerical study is to provide a solution for natural convection in a partially heated, wavy cavity filled with a nanofluid using Buongiorno’s…

Abstract

Purpose

The main purpose of this numerical study is to provide a solution for natural convection in a partially heated, wavy cavity filled with a nanofluid using Buongiorno’s nanofluid model.

Design/methodology/approach

The domain of interest is a two-dimensional cavity bounded by an isothermal left wavy wall, adiabatic horizontal flat walls and right flat wall with a partial isothermal zone. To study the behaviour of the nanofluid, a two-phase Buongiorno mathematical model with the effects of the Brownian motion and thermophoresis is used. The governing dimensionless partial differential equations with corresponding boundary conditions were numerically solved by the finite difference method of the second-order accuracy using the algebraic transformation of the physical wavy cavity in a computational rectangular domain. The study has been conducted using the following values of the governing parameters: Ra = 104-106, Le = 10, Pr = 6.26, Nr = 0.1, Nb = 0.1, Nt = 0.1, A = 1, κ = 1-3, b = 0.2, hhs/L = 0.25, h1/L = 0.0-0.75 and τ = 0-0.25.

Findings

It is found that an increase in the undulation number leads to a weak intensification of convective flow and a reduction of Nū because of more essential cooling of the wavy troughs where the temperature gradient decreases. Variations of the heater location show a modification of the fluid flow and heat transfer. The upper position of the heater reflects the minimum heat transfer rate, while the position between the bottom part and the middle section (h1/L = 0.25) characterizes an enhancement of heat transfer.

Originality/value

The originality of this work is to analyse the natural convection in a partially heated wavy cavity filled by a nanofluid using Buongiorno’s nanofluid model. The results will benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2015

N.S. Bondareva, M. A. Sheremet and I. Pop

Unsteady natural convection of water-based nanofluid within a right-angle trapezoidal cavity under the influence of a uniform inclined magnetic field using the…

Abstract

Purpose

Unsteady natural convection of water-based nanofluid within a right-angle trapezoidal cavity under the influence of a uniform inclined magnetic field using the mathematical nanofluid model proposed by Buongiorno is presented. The paper aims to discuss these issues.

Design/methodology/approach

The left vertical and right inclined walls of the enclosure are kept at constant but different temperatures whereas the top and bottom horizontal walls are adiabatic. All boundaries are assumed to be impermeable to the base fluid and to nanoparticles. In order to study the behavior of the nanofluid, a non-homogeneous Buongiorno’s mathematical model is taken into account. The physical problems are represented mathematically by a set of partial differential equations along with the corresponding boundary conditions. By using an implicit finite difference scheme the dimensionless governing equations are numerically solved.

Findings

The governing parameters are the Rayleigh, Hartmann and Lewis numbers along with the inclination angle of the magnetic field relative to the gravity vector, the aspect ratio and the dimensionless time. The effects of these parameters on the average Nusselt number along the hot wall, as well as on the developments of streamlines, isotherms and isoconcentrations are analyzed. The results show that key parameters have substantial effects on the flow, heat and mass transfer characteristics.

Originality/value

The present results are new and original for the heat transfer and fluid flow in a right-angle trapezoidal cavity under the influence of a uniform inclined magnetic field using the mathematical nanofluid model proposed by Buongiorno. The results would benefit scientists and engineers to become familiar with the flow behavior of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 September 2018

M. Muthtamilselvan and A. Renuka

The purpose of this paper is to investigate the nanofluid flow and heat transfer induced by two co- axially rotating disks using Buongiorno’s model. This model took into…

Abstract

Purpose

The purpose of this paper is to investigate the nanofluid flow and heat transfer induced by two co- axially rotating disks using Buongiorno’s model. This model took into account the Brownian diffusion and thermophoresis effects due to the presence of nanoparticles.

Design/methodology/approach

The governing partial differential equation was transformed into a set of nonlinear ordinary differential equations by using similarity transformation and solved numerically using shooting techniques.

Findings

The present work is a comparison study of Maxwell-Garnett model and modified Maxwell model for the effective thermal conductivity of nanofluids. The effects of different involved parameters on velocity and temperature profile are examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and studied.

Originality/value

It is found that the results of azimuthal velocity profile are an increasing function of upper disk stretching parameter. The radial and axial velocity profile is enlarged for a large value of lower stretching parameter. Fluid temperature decays for large values Reynolds number and lower disk stretching parameter.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 December 2018

Ammar I. Alsabery, Taher Armaghani, Ali J. Chamkha, Muhammad Adil Sadiq and Ishak Hashim

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic…

Abstract

Purpose

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Design/methodology/approach

The current work investigates the problem of mixed convection heat transfer in a double lid-driven square cavity in the presence of magnetic field. The used cavity is filled with water-Al2O3 nanofluid based on Buongiorno’s two-phase model. The bottom horizontal wall is maintained at a constant high temperature and moves to the left/right, while the top horizontal wall is maintained at a constant low temperature and moves to the right/left. The left and right vertical walls are thermally insulated. The dimensionless governing equations are solved numerically using the Galerkin weighted residual finite element method.

Findings

The obtained results show that the heat transfer rate enhances with an increment of Reynolds number or a reduction of Hartmann number. In addition, effects of thermophoresis and Brownian motion play a significant role in the growth of convection heat transfer.

Originality/value

According to above-mentioned studies and to the authors’ best knowledge, there has no study reported the MHD mixed convection heat transfer in a double lid-driven cavity using the two-phase nanofluid model. Thus, the authors of the present study believe that this work is valuable. Therefore, the aim of this comprehensive numerical study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

Saeed Dinarvand, Reza Hosseini and Ioan Pop

– The purpose of this paper is to do a comprehensive study on the unsteady general three-dimensional stagnation-point flow and heat transfer of a nanofluid by Buongiorno’s model.

Abstract

Purpose

The purpose of this paper is to do a comprehensive study on the unsteady general three-dimensional stagnation-point flow and heat transfer of a nanofluid by Buongiorno’s model.

Design/methodology/approach

In this study, the convective transport equations include the effects of Brownian motion and thermophoresis. By introducing new similarity transformations for velocity, temperature and nanoparticle volume fraction, the basic equations governing the flow, heat and mass transfer are reduced into highly non-linear ordinary differential equations. The resulting non-linear system has been solved both analytically and numerically.

Findings

The analysis shows that velocity, temperature and nanoparticle concentration profiles in the respective boundary layers depend on five parameters, namely unsteadiness parameter A, Brownian motion parameter Nb, thermophoresis parameter Nt, Prandtl number Pr and Lewis number Le. It is found that the thermal boundary layer thickens with a rise in both of the Brownian motion and the thermophoresis effects. Therefore, similar to the earlier reported results, the Nusselt number decreases as the Brownian motion and thermophoresis effects become stronger. A correlation for the Nusselt number has been developed based on a regression analysis of the data. This correlation predicts the numerical results with a maximum error of 9 percent for a usual domain of the physical parameters.

Originality/value

The stagnation point flow toward a wavy cylinder (with nodal and saddle stagnation points) that a little attention has been given to it up to now. The examination of unsteadiness effect on the general three-dimensional stagnation-point flow. The application of an interesting and global model (Boungiorno’s model) for the nanofluid that incorporates the effects of Brownian motion and thermophoresis. The study of the effects of Brownian motion and thermophoresis on the nanofluid flow, heat and mass transfer characteristics. The prediction of correlation for the Nusselt number based on a regression analysis of the data. General speaking, we can tell the problem with this geometry, characteristics, the applied model, and comprehensive results, was Not studied and analyzed in literature up to now.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 December 2020

Thameem Basha Hayath, Sivaraj Ramachandran, Ramachandra Prasad Vallampati and O. Anwar Bég

Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in…

Abstract

Purpose

Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many applications, the variability of these properties plays a significant role in modifying transport characteristics while the temperature difference in the boundary layer is notable. These include drag reduction in heavy oil transport systems, petroleum purification and coating manufacturing. The purpose of this study is to develop, a comprehensive mathematical model, motivated by the last of these applications, to explore the impact of variable viscosity and variable thermal conductivity characteristics in magnetohydrodynamic non-Newtonian nanofluid enrobing boundary layer flow over a horizontal circular cylinder in the presence of cross-diffusion (Soret and Dufour effects) and appreciable thermal radiative heat transfer under a static radial magnetic field.

Design/methodology/approach

The Williamson pseudoplastic model is deployed for rheology of the nanofluid. Buongiorno’s two-component model is used for nanoscale effects. The dimensionless nonlinear partial differential equations have been solved by using an implicit finite difference Keller box scheme. Extensive validation with earlier studies in the absence of nanoscale and variable property effects is included.

Findings

The influence of notable parameters such as Weissenberg number, variable viscosity, variable thermal conductivity, Soret and Dufour numbers on heat, mass and momentum characteristics are scrutinized and visualized via graphs and tables.

Research limitations/implications

Buongiorno (two-phase) nanofluid model is used to express the momentum, energy and concentration equations with the following assumptions. The laminar, steady, incompressible, free convective flow of Williamson nanofluid is considered. The body force is implemented in the momentum equation. The induced magnetic field strength is smaller than the external magnetic field and hence it is neglected. The Soret and Dufour effects are taken into consideration.

Practical implications

The variable viscosity and thermal conductivity are considered to investigate the fluid characteristic of Williamson nanofluid because of viscosity and thermal conductivity have a prime role in many industries such as petroleum refinement, food and beverages, petrochemical, coating manufacturing, power and environment.

Social implications

This fluid model displays exact rheological characteristics of bio-fluids and industrial fluids, for instance, blood, polymer melts/solutions, nail polish, paint, ketchup and whipped cream.

Originality/value

The outcomes disclose that the Williamson nanofluid velocity declines by enhancing the Lorentz hydromagnetic force in the radial direction. Thermal and nanoparticle concentration boundary layer thickness is enhanced with greater streamwise coordinate values. An increase in Dufour number or a decrease in Soret number slightly enhances the nanofluid temperature and thickens the thermal boundary layer. Flow deceleration is induced with greater viscosity parameter. Nanofluid temperature is elevated with greater Weissenberg number and thermophoresis nanoscale parameter.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Ioan Pop, Mohammad Ghalambaz and Mikhail Sheremet

The purpose of this paper is to theoretically analysis the steady-state natural convection flow and heat transfer of nanofluids in a square enclosure filled with a porous…

299

Abstract

Purpose

The purpose of this paper is to theoretically analysis the steady-state natural convection flow and heat transfer of nanofluids in a square enclosure filled with a porous medium saturated with a nanofluid considering local thermal non-equilibrium (LTNE) effects. Different local temperatures for the solid phase of the nanoparticles, the solid phase of porous matrix and the liquid phase of the base fluid are taken into account.

Design/methodology/approach

The Buongiorno’s model, incorporating the Brownian motion and thermophoresis effects, is utilized to take into account the migration of nanoparticles. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the finite element method is utilized to solve the governing equations.

Findings

The results show that the increase of buoyancy ratio parameter (Nr) decreases the magnitude of average Nusselt number. The increase of the nanoparticles-fluid interface heat transfer parameter (Nhp) increases the average Nusselt number for nanoparticles and decreases the average Nusselt number for the base fluid. The nanofluid and porous matrix with large values of modified thermal capacity ratios (γ p and γ s ) are of interest for heat transfer applications.

Originality/value

The three phases of nanoparticles, base fluid and the porous matrix are in the LTNE. The effect of mass transfer of nanoparticles due to the Brownian motion and thermophoresis effects are also taken into account.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2017

Junaid Ahmad Khan, M. Mustafa, T. Hayat, Mustafa Turkyilmazoglu and A. Alsaedi

The purpose of the present study is to explore a three-dimensional rotating flow of water-based nanofluids caused by an infinite rotating disk.

Abstract

Purpose

The purpose of the present study is to explore a three-dimensional rotating flow of water-based nanofluids caused by an infinite rotating disk.

Design/methodology/approach

Mathematical formulation is performed using the well-known Buongiorno model which accounts for the combined influence of Brownian motion and thermophoresis. The recently suggested condition of passively controlled wall nanoparticle volume fraction has been adopted.

Findings

The results reveal that temperature decreases with an increase in thermophoresis parameter, whereas it is negligibly affected with a variation in the Brownian motion parameter. Axial velocity is negative because of the downward flow in the vertical direction.

Originality/value

Two- and three-dimensional streamlines are also sketched and discussed. The computations are found to be in very good agreement with the those of existing studies in the literature for pure fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 July 2018

Cornelia Revnic, Eiyad Abu-Nada, Teodor Grosan and Ioan Pop

This paper aims to develop a numerical study of the steady natural convection in a rectangular cavity filled with the CuO–water-based nanofluid. It is assumed that the…

Abstract

Purpose

This paper aims to develop a numerical study of the steady natural convection in a rectangular cavity filled with the CuO–water-based nanofluid. It is assumed that the viscosity of nanofluids depends on the temperature and on the nanofluids volume fraction.

Design/methodology/approach

The mathematical nanofluid model has been formulated on the basis of the model proposed by Buongiorno (2006). The system of partial differential equations is written in terms of a dimensionless stream function, vorticity, temperature and the volume fraction of the nanoparticles, and is solved numerically using the finite difference method for different values of the governing parameters.

Findings

It is found that both fluid flow and heat transfer coefficient are affected by the considered parameters. Thus, the Nusselt number is slowly increasing with increasing volume fraction from 2 per cent to 5 per cent and it is more pronounced increasing with increasing Rayleigh number from 103 to 105.

Originality/value

Buongiorno’s (2006) nanofluid model has been applied for the flow with the characteristics as mentioned in the paper. A comprehensive survey on the behavior of flow and heat transfer characteristics has been presented. All plots presented in the paper are new and are not reported in any other study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 385