Search results

1 – 10 of 147
Article
Publication date: 19 January 2024

Kenneth Lawani, Farhad Sadeghineko, Michael Tong and Mehmethan Bayraktar

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D…

158

Abstract

Purpose

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser scanning technologies. This case study integrated 3D laser point cloud scans with BIM to explore the effects of BIM adoption on ongoing construction project, whilst evaluating the utility of 3D laser scanning technology for producing structural 3D models by converting point cloud data (PCD) into BIM.

Design/methodology/approach

The primary data acquisition adopted the use of Trimble X7 laser scanning process, which is a set of data points in the scanned space that represent the scanned structure. The implementation of BIM with the 3D PCD to explore the precision and effectiveness of the construction processes as well as the as-built condition of a structure was precisely captured using the 3D laser scanning technology to recreate accurate and exact 3D models capable of being used to find and fix problems during construction.

Findings

The findings indicate that the integration of BIM and 3D laser scanning technology has the tendency to mitigate issues such as building rework, improved project completion times, reduced project cost, enhanced interdisciplinary communication, cooperation and collaboration amongst the project duty holders, which ultimately enhances the overall efficiency of the construction project.

Research limitations/implications

The acquisition of data using 3D laser scanner is usually conducted from the ground. Therefore, certain aspects of the building could potentially disturb data acquisition; for example, the gable and sections of eaves (fascia and soffit) could be left in a blind spot. Data acquisition using 3D laser scanner technology takes time, and the processing of the vast amount of data acquired is laborious, and if not carefully analysed, could result in errors in generated models. Furthermore, because this was an ongoing construction project, material stockpiling and planned construction works obstructed and delayed the seamless capture of scanned data points.

Originality/value

These findings highlight the significance of integrating BIM and 3D laser scanning technology in the construction process and emphasise the value of advanced data collection methods for effectively managing construction projects and streamlined workflows.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 15 August 2024

Susheel Pandey, Rajeev Srivastava, Christ Prakash Paul, Arun Kumar Rai and Rakesh Narain

The aim of this paper is to study the effect of laser shock peening (LSP) on mechanical behaviour of the laser-directed energy deposition (LDED)-based printed 15-5 PH stainless…

Abstract

Purpose

The aim of this paper is to study the effect of laser shock peening (LSP) on mechanical behaviour of the laser-directed energy deposition (LDED)-based printed 15-5 PH stainless steel with U and V notches. The study specifically concentrates on the evaluation of effect of scan strategy, machining and LSP processing on microstructural, texture evolution and fatigue behaviour of LDED-printed 15-5 PH steel.

Design/methodology/approach

For LSP treatment, 15-5 PH steel was printed using LDED process with bidirectional scanning strategy (XX [θ = 0°) and XY [θ = 90°]) at optimised laser power of 600 W with a scanning speed of 300 mm/min and a powder feed rate of 3 g/min. Furthermore, LSP treatment was conducted on the V- and U-notched fatigue specimens extracted from LDED-built samples at laser energy of 3.5 J with a pulse width of 10 ns using laser spot diameter of 3 mm. Post to the LSP treatment, the surface roughness, fatigue life assessment and microstructural evolution analysis is performed. For this, different advanced characterisation techniques are used, such as scanning electron microscopy attached with electron backscatter diffraction for microstructure and texture, X-ray diffraction for residual stress (RS) and structure information, Vicker’s hardness tester for microhardness and universal testing machine for low-cycle fatigue.

Findings

It is observed that both scanning strategies during the LDED printing of 15-5 PH steel and laser peening have played significant role in fatigue life. Specimens with the XY printing strategy shows higher fatigue life as compared to XX with both U- and V-notched conditions. Furthermore, machining and LSP treatment led to a significant improvement of fatigue life for both scanning strategies with U and V notches. The extent of increase in fatigue life for both XX and XY scanning strategy with V notch is found to be higher than U notch after LSP treatment, though without LSP samples with U notch have a higher fatigue life. As fabricated sample is found to have the lowest fatigue life as compared to machines and laser peened with both scan strategies.

Originality/value

This study presents an innovative method to improve the fatigue life of 15-5 PH stainless steel by changing the microstructure, texture and RS with the adoption of a suitable scanning strategy, machining and LSP treatment as post-processing. The combination of preferred microstructure and compressive RS in LDED-printed 15-5 PH stainless steel achieved with a synergy between microstructure and RS, which is responsible to improve the fatigue life. This can be adopted for the futuristic application of LDED-printed 15-5 PH stainless steel for different applications in aerospace and other industries.

Graphical abstract

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2024

Tunay Turk, Cesar E. Dominguez, Austin T. Sutton, John D. Bernardin, Jonghyun Park and Ming C. Leu

This paper aims to present spot pattern welding (SPW) as a scanning strategy for laser-foil-printing (LFP) additive manufacturing (AM) in place of the previously used continuous…

Abstract

Purpose

This paper aims to present spot pattern welding (SPW) as a scanning strategy for laser-foil-printing (LFP) additive manufacturing (AM) in place of the previously used continuous pattern welding (CPW) (line-raster scanning). The SPW strategy involves generating a sequence of overlapping spot welds on the metal foil, allowing the laser to form dense and uniform weld beads. This in turn reduces thermal gradients, promotes material consolidation and helps mitigate process-related risks such as thermal cracking, porosity, keyholing and Marangoni effects.

Design/methodology/approach

304L stainless steel (SS) feedstock is used to fabricate test specimens using the LFP system. Imaging techniques are used to examine the melt pool dimensions and layer bonding. In addition, the parts are evaluated for residual stresses, mechanical strength and grain size.

Findings

Compared to CPW, SPW provides a more reliable heating/cooling relationship that is less dependent on part geometry. The overlapping spot welds distribute heat more evenly, minimizing the risk of elevated temperatures during the AM process. In addition, the resulting dense and uniform weld beads contribute to lower residual stresses in the printed part.

Originality/value

To the best of the authors’ knowledge, this is the first study to thoroughly investigate SPW as a scanning strategy using the LFP process. In general, SPW presents a promising strategy for securing embedded sensors into LFP parts while minimizing residual stresses.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 July 2024

Tianyu Zhang and Lang Yuan

Surface quality and porosity significantly influence the structural and functional properties of the final product. This study aims to establish and explain the underlying…

Abstract

Purpose

Surface quality and porosity significantly influence the structural and functional properties of the final product. This study aims to establish and explain the underlying relationships among processing parameters, top surface roughness and porosity level in additively manufactured 316L stainless steel.

Design/methodology/approach

A systematic variation of printing process parameters was conducted to print cubic samples based on laser power, speed and their combinations of energy density. Melt pool morphologies and dimensions, surface roughness quantified by arithmetic mean height (Sa) and porosity levels were characterized via optical confocal microscopy.

Findings

The study reveals that the laser power required to achieve optimal top surface quality increases with the volumetric energy density (VED) levels. A smooth top surface (Sa < 15 µm) or a rough surface with humps at high VEDs (VED > 133.3 J/mm3) can serve as indicators for fully dense bulk samples, while rough top surfaces resulting from melt pool discontinuity correlate with high porosity levels. Under insufficient VED, melt pool discontinuity dominates the top surface. At high VEDs, surface quality improves with increased power as mitigation of melt pool discontinuity, followed by the deterioration with hump formation.

Originality/value

This study reveals and summarizes the formation mechanism of dominant features on top surface features and offers a potential method to predict the porosity by observing the top surface features with consideration of processing conditions.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 January 2024

Mohamed Marzouk and Mohamed Zaher

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing…

111

Abstract

Purpose

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing complexity of different systems, facility managers may suffer from a lack of information. The purpose of this paper is to propose a new facility management approach that links segmented assets to the vital data required for managing facilities.

Design/methodology/approach

Automatic point cloud segmentation is one of the most crucial processes required for modelling building facilities. In this research, laser scanning is used for point cloud acquisition. The research utilises region growing algorithm, colour-based region-growing algorithm and Euclidean cluster algorithm.

Findings

A case study is worked out to test the accuracy of the considered point cloud segmentation algorithms utilising metrics precision, recall and F-score. The results indicate that Euclidean cluster extraction and region growing algorithm revealed high accuracy for segmentation.

Originality/value

The research presents a comparative approach for selecting the most appropriate segmentation approach required for accurate modelling. As such, the segmented assets can be linked easily with the data required for facility management.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 9 September 2024

Yogesh Patil, Milind Akarte, K. P. Karunakaran, Ashik Kumar Patel, Yash G. Mittal, Gopal Dnyanba Gote, Avinash Kumar Mehta, Ronald Ely and Jitendra Shinde

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS…

Abstract

Purpose

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS) and Binder jetting three-dimensional printing (BJ3DP) are widely used for patternless sand mold and core production. This study aims to perform an in-depth literature review to understand the current status, determine research gaps and propose future research directions. In addition, obtain valuable insights into authors, organizations, countries, keywords, documents, sources and cited references, sources and authors.

Design/methodology/approach

This study followed the systematic literature review (SLR) to gather relevant rapid sand casting (RSC) documents via Scopus, Web of Science and EBSCO databases. Furthermore, bibliometrics was performed via the Visualization of Similarities (VOSviewer) software.

Findings

An evaluation of 116 documents focused primarily on commercial AM setups and process optimization of the SLS. Process optimization studies the effects of AM processes, their input parameters, scanning approaches, sand types and the integration of computer-aided design in AM on the properties of sample. The authors performed detailed bibliometrics of 80 out of 120 documents via VOSviewer software.

Research limitations/implications

This review focuses primarily on the SLS AM process.

Originality/value

A SLR and bibliometrics using VOSviewer software for patternless sand mold and core production via the AM process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2024

Mustafa Kuntoğlu, Emin Salur, Munish Kumar Gupta, Saad Waqar, Natalia Szczotkarz, Govind Vashishtha, Mehmet Erdi Korkmaz and Grzegorz M. Krolczyk

The nickel-based alloys Inconel 625 and Inconel 718 stand out due to their high strength and corrosion resistance in important industries like aerospace, aviation and automotive…

Abstract

Purpose

The nickel-based alloys Inconel 625 and Inconel 718 stand out due to their high strength and corrosion resistance in important industries like aerospace, aviation and automotive. Even though they are widely used, current techniques of producing materials that are difficult to cut pose several problems from a financial, ecological and even health perspective. To handle these problems and acquire improved mechanical and structural qualities, laser powder bed fusion (LPBF) has been widely used as one of the most essential additive manufacturing techniques. The purpose of this article is to focus on the state of the art on LPBF parts of Inconel 625 and Inconel 718 for microstructure, mechanical behavior and postprocessing.

Design/methodology/approach

The mechanical behavior of LPBF-fabricated Inconel is described, including hardness, surface morphology and wear, as well as the influence of fabrication orientation on surface quality, biocompatibility and resultant mechanical properties, particularly tensile strength, fatigue performance and tribological behaviors.

Findings

The postprocessing techniques such as thermal treatments, polishing techniques for surface enhancement, mechanical and laser-induced peening and physical operations are summarized.

Originality/value

The highlighted topic presents the critical aspects of the advantages and challenges of the LPBF parts produced by Inconel 718 and 625, which can be a guideline for manufacturers and academia in practical applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 January 2024

Godfred Fobiri, Innocent Musonda and Franco Muleya

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in…

Abstract

Purpose

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in the built environment. This paper aims to review RC applications, potentials, limitations and the extent to which RC can be adopted for cost monitoring of construction projects.

Design/methodology/approach

A mixed-method approach, using Bibliometric analysis and the PRISMA framework, was used to review and analyse 112 peer-reviewed journal articles from the Scopus and Web of Science databases.

Findings

The study reveals RC has been applied in various areas in the built environment, but health and safety, cost and labour productivity monitoring have received little or no attention. It is proposed that RC can significantly support cost monitoring owing to its ability to acquire accurate and quick digital as-built 3D point cloud data, which contains rich measurement points for the valuation of work done.

Research limitations/implications

The study’s conclusions are based only on the Scopus and Web of Science data sets. Only English language documents were approved, whereas others may be in other languages. The research is a non-validation of findings using empirical data to confirm the data obtained from RC literature.

Practical implications

This paper highlights the importance of RC for cost monitoring in construction projects, filling knowledge gaps and enhancing project outcomes.

Social implications

The implementation of RC in the era of the digital revolution has the potential to improve project delivery around the world today. Every project’s success is largely determined by the availability of precise and detailed digital data. RC applications have pushed for more sustainable design, construction and operations in the built environment.

Originality/value

The study has given research trends on the extent of RC applications, potentials, limitations and future directions.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 July 2021

Ana Carolina Franco De Oliveira, Cristiano Saad Travassos do Carmo, Alexandre Santana Cruz and Renata Gonçalves Faisca

In developing countries, such as Brazil, the construction sector is consistently focused on the construction of new buildings, and there is no dissemination of the preservation…

Abstract

Purpose

In developing countries, such as Brazil, the construction sector is consistently focused on the construction of new buildings, and there is no dissemination of the preservation, restoration and maintenance of historic buildings. Idle buildings, due to the use and lack of maintenance, present pathological manifestations, such as moisture problems that compromise specially their thermal and energy performance. With this in mind, the purpose of this work is to create a digital model using terrestrial photogrammetry and suggest retrofit interventions based on computer simulation to improve the thermal and energy performance of a historical building.

Design/methodology/approach

The proposed methodology combined terrestrial photogrammetry using common smartphones and commercial software for historical buildings with building information modeling (historic building information modeling (HBIM)) and building energy modeling (BEM). The approach follows five steps: planning, site visit, data processing, data modeling and results. Also, as a case study, the School of Architecture and Urbanism of the Fluminense Federal University, built in 1888, was chosen to validate the approach.

Findings

A digital map of pathological manifestations in the HBIM model was developed, and interventions considering the application of expanded polystyrene in the envelope to reduce energy consumption were outlined. From the synergy between HBIM and BEM, it was concluded that the information modeled using photogrammetry was fundamental to create the energy model, and simulations were needed to optimize the possible solutions in terms of energy consumption.

Originality/value

Firstly, the work proposes a reasonable methodology to be applied in development countries without sophisticated technologies, but with acceptable precision for the study purpose. Secondly, the presented study shows that the use of HBIM for energy modeling proved to be useful to simulate possible solutions that optimize the thermal and energy performance.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 December 2023

Isaac Akomea-Frimpong, Jacinta Rejoice Ama Delali Dzagli, Kenneth Eluerkeh, Franklina Boakyewaa Bonsu, Sabastina Opoku-Brafi, Samuel Gyimah, Nana Ama Sika Asuming, David Wireko Atibila and Augustine Senanu Kukah

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of…

Abstract

Purpose

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of public–private partnership (PPP) infrastructure projects. Such conferences together with available project reports and empirical studies recommend project managers and practitioners to adopt smart technologies and develop robust measures to tackle climate risk exposure. Comparatively, artificial intelligence (AI) risk management tools are better to mitigate climate risk, but it has been inadequately explored in the PPP sector. Thus, this study aims to explore the tools and roles of AI in climate risk management of PPP infrastructure projects.

Design/methodology/approach

Systematically, this study compiles and analyses 36 peer-reviewed journal articles sourced from Scopus, Web of Science, Google Scholar and PubMed.

Findings

The results demonstrate deep learning, building information modelling, robotic automations, remote sensors and fuzzy logic as major key AI-based risk models (tools) for PPP infrastructures. The roles of AI in climate risk management of PPPs include risk detection, analysis, controls and prediction.

Research limitations/implications

For researchers, the findings provide relevant guide for further investigations into AI and climate risks within the PPP research domain.

Practical implications

This article highlights the AI tools in mitigating climate crisis in PPP infrastructure management.

Originality/value

This article provides strong arguments for the utilisation of AI in understanding and managing numerous challenges related to climate change in PPP infrastructure projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 147