Search results

1 – 10 of 316
Article
Publication date: 8 July 2019

Lei Dong, Xiaoyu Zhang, Kun Liu, Xiaojun Liu, Ruiming Shi, Junyuan Wang and Feng Liu

The purpose of this paper is to investigate the tribological properties of the WC/TiC-Co substrate under different loading conditions under three impact abrasive wear conditions.

Abstract

Purpose

The purpose of this paper is to investigate the tribological properties of the WC/TiC-Co substrate under different loading conditions under three impact abrasive wear conditions.

Design/methodology/approach

The three body collisional wear behavior of Co alloy with WC and TiC at three impact energy was studied from 1 to 3 J. Meanwhile, the microstructure, hardness, phase transformation and wear behavior of these specimens were investigated by scanning electron microscopy, Rockwell hardness (HRV), EDS and impact wear tester. The resulting wear rate was quantified by electronic balance measurements under different pressures.

Findings

The specific wear rate increases with the increase of the nonlinearity of the impact energy and the increase in the content of WC or TiC. The effect of TiC on wear rate is greater than that of WC, but the hardness is smaller. The wear characteristics of the samples are mainly characterized by three kinds of behavior, such as cutting wear, abrasive wear and strain fatigue wear. The WC-Co with fewer TiC samples suffered heavier abrasive wear than the more TiC samples under both low and high impact energy and underwent fewer strain fatigue wears under high impact energy.

Originality/value

The experimental results show that the wear resistance of the Co alloy is improved effectively and the excellent impact wear performance is achieved. The results can be used in cutting tools such as coal mine cutting machines or other fields.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 November 2018

Cong Liu, Baohong Tong, Guotao Zhang, Wei Wang, Kun Liu and Peimin Xu

This paper aims to investigate the influence of oil–air lubrication flow behavior on point contact sliding wear characteristics.

Abstract

Purpose

This paper aims to investigate the influence of oil–air lubrication flow behavior on point contact sliding wear characteristics.

Design/methodology/approach

Oil–air lubrication equations between point contact counterparts were established on the basis of volume of fluid model. The effects of oil supply and injection azimuth on oil-phase volume fraction and its pressure distribution were simulated with commercial software Fluent. Characteristics of point contact sliding wear were then tested with an MFT-3000 friction tester under oil–air lubrication condition. The influence of flow behavior on wear characteristic was investigated combined with numerical and experimental results. The wear mechanism was revealed using SEM, EDS and ferrography.

Findings

When air supply speed is constant, the oil-phase volume fraction increases with the increase in oil supply, which helps form continuous oil film and decrease the sliding wear evidently. The injection angle and distance considerably influence the oil–air flow behavior. When injecting at a certain distance and angle, the oil-phase volume fraction reaches its maximum, and the abrasion loss is minimal. Under the test conditions in this study, abrasive particles are mainly debris and a few spiral cuttings. The wear mechanism is abrasive wear.

Originality/value

The influence of the behavior of oil–air lubrication flow on the characteristic of point contact sliding wear is analyzed. This work provides guidance for the application of oil–air lubrication technology in point contact friction pairs.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2018

Minghua Pang, Xiaojun Liu and Kun Liu

This study aims to clarify the influence mechanism of surface texture (arrays of circular/square and concave/convex) on the frictional properties of WC-TiC/Co cemented carbide…

Abstract

Purpose

This study aims to clarify the influence mechanism of surface texture (arrays of circular/square and concave/convex) on the frictional properties of WC-TiC/Co cemented carbide under a water-miscible cutting fluid (JAEGER SW-105, 5 per cent) environment.

Design/methodology/approach

Four types of textured cemented carbide surfaces (arrays of circular/square and concave/convex that have different textured densities and sizes) were fabricated using laser surface technology. Pin-on-disc tests between an AISI 304 stainless steel ball and WC-TiC/Co cemented carbide samples were carried out for a variety of normal loads (1, 3 and 5 N) under a water-miscible cutting fluid environment. The effects of textured type, density and size on the friction coefficient were obtained.

Findings

Compared to a smooth surface, some textured samples successfully resulted in a reduced friction coefficient. The friction coefficient of textured WC-TiC/Co cemented carbide samples depended greatly on the textured type, density and size. Given the increase in textured density (ranging from 10 to 30 per cent), the friction coefficient of the test samples first decreased and then increased for all normal loads (1, 3 and 5 N), and the minimum friction coefficient was obtained at the textured density of 20 per cent. The concave textured surface showed obvious advantages in friction coefficient reduction regardless of textured density, size and normal load compared with the convex textured surface. Finally, the correlation between textured diameter/length and Hertzian contact width was studied for various normal loads and texture sizes. A 2.6 ratio of textured diameter/length to Hertzian contact width is recommended under for lubricated sliding contact with the water-miscible cutting fluid.

Originality/value

The main contribution of this work is in providing a design reference and obtaining an essential understanding on the effect of surface texture (arrays of circular/square and concave/convex) on the friction of WC-TiC/Co cemented carbide under a water-miscible cutting fluid environment.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 July 2018

Yunlong Jiao, Xiaojun Liu and Kun Liu

Dynamic spreading and wetting on the rough surfaces is complicated, which directly affects the fluxion and phrase transition properties of the fluid. This paper aims to enhance…

Abstract

Purpose

Dynamic spreading and wetting on the rough surfaces is complicated, which directly affects the fluxion and phrase transition properties of the fluid. This paper aims to enhance our knowledge of the mechanism of micro-texture lubrication from interface wettability and provide some guidance for the practical manufacturing of the surfaces with special wettability and better lubrication characteristics.

Design/methodology/approach

The effect of surface topography on the wetting behavior of both smooth and rough hydrophilic surfaces was investigated using a combination of experimental and simulation approaches. Four types of patterns with different topographies were designed and fabricated through laser surface texturing. The samples were measured with a non-contact three-Dimensional (3D) optical profiler and were parameterized based on ISO 25178. Quantitative research on the relevancy between the topography characteristic and wettability was conducted with several 3D topography parameters.

Findings

Results show that for the surfaces with isotropic textures, topography with a small skewness (Ssk) and a large kurtosis (Sku) exhibits better wettability and spreading behavior. For the surfaces with anisotropic textures (smaller texture aspect ratio, Str), dominant textures (such as long groove, rectangle) play a significant guiding role in promoting spreading. In addition, the moving mechanism of the triple contact line and anisotropic spreading were also studied using a computational fluid dynamics simulation. The simulation results have a good adherence with the experimental results.

Originality/value

Most of the surface characterization methods at present remain at a level that is related to geometric description, and the topography parameters are limited to 2D roughness parameters. So in present study, the relevancy between wettability and 3D surface topography parameters is explored. The authors believe that the current work provides a new viewpoint to the relevancy between surface topography and wettability.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 September 2018

Yunlong Jiao, Xiaojun Liu and Kun Liu

Driving safety on a wet road is closely related to the wet skid resistance of tires. The purpose of this paper is to reveal the evolution of wet skid resistance at different water…

Abstract

Purpose

Driving safety on a wet road is closely related to the wet skid resistance of tires. The purpose of this paper is to reveal the evolution of wet skid resistance at different water film thicknesses and provide some guidance on the design of a tread pattern with improved traction on rainy roads.

Design/methodology/approach

Brake tests are performed in a laboratory with a viscoelastic tribotester at various water film thicknesses. The initial water film thickness is 3 mm, which decreases with an increase in the test number. Brake friction force is dynamically measured at water film thicknesses ranging from 0 mm to 3 mm.

Findings

The results show that water film thickness exerts a great influence on the forms of tire motion and slip ratio. The tire is much easier to slide on the road with thick water film and also with a considerably thin water film (about 0-1 mm) during a sharp braking process. The brake traction can be very low under this road condition despite the apparently safe quality of the road.

Originality/value

The authors design and establish a new viscoelastic tribotester which is used to simulate the real braking sliding process and study the tribological properties between tire rubber and road surface. The variation in the wet friction coefficient and slip ratio at different water film thicknesses have a great influence on the design of a tread pattern with improved traction on rainy roads.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2021

Jinlong Shen, Tong Zhang, Jimin Xu, Xiaojun LIU and Kun Liu

This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the…

Abstract

Purpose

This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the outer surface of the inner ring. The influence of roughness parameters of a textured surface on reducing friction coefficient and temperature rise was also explored.

Design/methodology/approach

This study adopts a laser processing method to fabricate dimple-type textures. Three-dimensional roughness parameters were used to characterize the textured surfaces. The friction coefficients of five SPBs with surface texture and one original commercially available SPB without surface texture under different nominal loads were measured on a self-established test rig. The data of temperature rise were obtained by nine embedded thermal couples.

Findings

The results indicate that SPBs with textures generally exhibit lower friction coefficients than the original SPB without textures. The dimple depth has a significant influence on improving the tribological performance, which coincides with the analysis by surface roughness parameters. A textured surface with negative Ssk and high Vvc has the minimum temperature rise.

Originality/value

As it is too difficult to arrange sensors into heavy-load SPBs, there are few reports about the temperature characteristics. Through nine embedded thermal couples, the distribution of temperature rise on the inner ring of SPBs was given in this study. The positive effect of surface texture on reducing temperature rise and friction coefficient was verified, which is beneficial for the design of heavy-load SPBs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 August 2018

Fanjing Meng, Kun Liu and Tao Qin

Granular lubrication is a new lubrication method and can be used in extreme working conditions; however, the obstacle of force transmission characteristics needs to be urgently…

Abstract

Purpose

Granular lubrication is a new lubrication method and can be used in extreme working conditions; however, the obstacle of force transmission characteristics needs to be urgently solved to fully understand the mechanical and bearing mechanisms of granular lubrication.

Design/methodology/approach

A flat sliding friction cell is developed to study the force transmission behaviors of granules under shearing. Granular material, sliding velocity, granule size and granule humidity are considered in these experiments. The measured normal and shear force, which is transmitted from the bottom friction pair to the top friction pair via the granular lubrication medium, reveals the influence of these controlling parameters on the force transmission characteristics of granules.

Findings

Experimental results show that a low sliding velocity, a large granule size and a low granular humidity increase the measured normal force and shear force. Besides, a comparison experiment with other typical lubrication styles is also carried out. The force transmission under granular lubrication is mainly dependent on the force transmission path, which is closely related to the deconstruction and reconstruction of the force chains in the granule assembly.

Originality/value

These findings reveal the force transmission mechanism of granular lubrication and can also offer the helpful reference for the design of the new granular lubrication bearing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 December 2018

Fanjing Meng and Kun Liu

Granular flow lubrication is developed in recent years as a new lubrication method which can be used in extreme environments, while the stick-slip mechanisms of granular flow…

Abstract

Purpose

Granular flow lubrication is developed in recent years as a new lubrication method which can be used in extreme environments, while the stick-slip mechanisms of granular flow lubrication are an urgent obstacle remains unsolved in fully establishing the granular flow lubrication theory.

Design/methodology/approach

A granular flow lubrication research model is constructed by the discrete element method. Using this numerical model, the mesoscopic and macroscopic responses of stick-slip that influenced by the shear velocity, and the influence of the shear velocity and the normal pressure on the vertical displacement are studied.

Findings

Research results show that movement states of granular flow lubrication medium gradually transform from the stick-slip state to the sliding state with increased shear velocity, in which these are closely related to the fluctuations of force chains and friction coefficients between granules. The stick-slip phenomenon comes up at lower shear velocity prior to the appearance of granular lift-off between the two friction pair, which comes up at higher shear velocity. Higher normal pressure restrains the dilatation of the granular flow lubrication medium, which in turn causes a decrease in the displacement.

Originality/value

These findings reveal the stick-slip mechanism of granular flow lubrication and can also offer the helpful reference for the design of the new granular lubrication bearing.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 July 2019

Xizhang Chen, Kun Liu, Wei Guo, Namrata Gangil, Arshad Noor Siddiquee and Sergey Konovalov

In recent years, the use of high performing materials, and application of additive manufacturing technology for industrial production has witnessed a steady rise and its expanse…

1162

Abstract

Purpose

In recent years, the use of high performing materials, and application of additive manufacturing technology for industrial production has witnessed a steady rise and its expanse is only to increase in the future. “Selective laser melting (SLM) technique” for an exotic nickel-titanium (NiTi) shape memory alloy (SMA) is expected to a great facilitator to research in this area. The purpose of this paper is to put forth the research direction of NiTi shape memory alloy by selective laser melting.

Design/methodology/approach

This review also summaries and skims out the information on process equipment, adopted methodologies/strategies, effects of process parameters on important responses e.g. microstructure and comprehensive functional and mechanical properties of SLM-NiTi. In particular, the functional characteristics (i.e. shape memory effects and super-elasticity behavior), process analysis and application status are discussed.

Findings

Current progresses and challenges in fabricating NiTi-SMA of SLM technology are presented.

Practical implications

This review is a useful tool for professional and researchers with an interest in the field of SLM of NiTi-SMA.

Originality/value

This review provides a comprehensive review of the publications related to the SLM techniques of NiTi-SMA while highlighting current challenges and methods of solving them.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 September 2021

Gang Wang, Wei Wang, Yi Zhang, Xu Zhang, Zhaowen Hu, Kun Liu and Daogao Wei

This paper aims to investigate the micro-plastic behavior of granular material in three-body friction interface and its effect on friction characteristics.

Abstract

Purpose

This paper aims to investigate the micro-plastic behavior of granular material in three-body friction interface and its effect on friction characteristics.

Design/methodology/approach

A numerical model of particle breakage in friction contact was constructed based on the discrete element method. The influence of friction pair working condition and internal bonding strength on the micro-plastic behavior of particulate matter was analyzed. A reciprocating linear tribometer was used to verify the simulation results.

Findings

The results show that when the granular materials are squeezed and sheared by the friction pair, a shear zone inclined to the left is gradually formed, which leads to particle breakage. The breakage of the particle leads to the reduction of load-bearing capacity and the increase of friction coefficient. Due to the differences in bond strength and friction pairs working conditions, the particle plastic behavior is divided into the following three states: elastic deformation, breakage and plastic rheology.

Originality/value

This study is helpful to understand the effect of the micro-plastic behavior of particles on the three-body friction characteristics.

Details

Industrial Lubrication and Tribology, vol. 73 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 316