Search results

1 – 10 of 113
Article
Publication date: 2 August 2018

Fanjing Meng, Kun Liu and Tao Qin

Granular lubrication is a new lubrication method and can be used in extreme working conditions; however, the obstacle of force transmission characteristics needs to be urgently…

Abstract

Purpose

Granular lubrication is a new lubrication method and can be used in extreme working conditions; however, the obstacle of force transmission characteristics needs to be urgently solved to fully understand the mechanical and bearing mechanisms of granular lubrication.

Design/methodology/approach

A flat sliding friction cell is developed to study the force transmission behaviors of granules under shearing. Granular material, sliding velocity, granule size and granule humidity are considered in these experiments. The measured normal and shear force, which is transmitted from the bottom friction pair to the top friction pair via the granular lubrication medium, reveals the influence of these controlling parameters on the force transmission characteristics of granules.

Findings

Experimental results show that a low sliding velocity, a large granule size and a low granular humidity increase the measured normal force and shear force. Besides, a comparison experiment with other typical lubrication styles is also carried out. The force transmission under granular lubrication is mainly dependent on the force transmission path, which is closely related to the deconstruction and reconstruction of the force chains in the granule assembly.

Originality/value

These findings reveal the force transmission mechanism of granular lubrication and can also offer the helpful reference for the design of the new granular lubrication bearing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 December 2018

Fanjing Meng and Kun Liu

Granular flow lubrication is developed in recent years as a new lubrication method which can be used in extreme environments, while the stick-slip mechanisms of granular flow…

Abstract

Purpose

Granular flow lubrication is developed in recent years as a new lubrication method which can be used in extreme environments, while the stick-slip mechanisms of granular flow lubrication are an urgent obstacle remains unsolved in fully establishing the granular flow lubrication theory.

Design/methodology/approach

A granular flow lubrication research model is constructed by the discrete element method. Using this numerical model, the mesoscopic and macroscopic responses of stick-slip that influenced by the shear velocity, and the influence of the shear velocity and the normal pressure on the vertical displacement are studied.

Findings

Research results show that movement states of granular flow lubrication medium gradually transform from the stick-slip state to the sliding state with increased shear velocity, in which these are closely related to the fluctuations of force chains and friction coefficients between granules. The stick-slip phenomenon comes up at lower shear velocity prior to the appearance of granular lift-off between the two friction pair, which comes up at higher shear velocity. Higher normal pressure restrains the dilatation of the granular flow lubrication medium, which in turn causes a decrease in the displacement.

Originality/value

These findings reveal the stick-slip mechanism of granular flow lubrication and can also offer the helpful reference for the design of the new granular lubrication bearing.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2024

Lijie Ma, Xinhui Mao, Chenrui Li, Yu Zhang, Fengnan Li, Minghua Pang and Qigao Feng

The purpose of this study is to reveal the friction reduction performance and mechanism of granular flow lubrication during the milling of difficult-to-machining materials and…

Abstract

Purpose

The purpose of this study is to reveal the friction reduction performance and mechanism of granular flow lubrication during the milling of difficult-to-machining materials and provide a high-performance lubrication method for the precision cutting of nickel-based alloys.

Design/methodology/approach

The milling tests for Inconel 718 superalloy under dry cutting, flood lubrication and granular flow lubrication were carried out, and the milling force and machined surface quality were used to evaluate their friction reduction effect. Furthermore, based on the energy dispersive spectrometer (EDS) spectrums and the topographical features of machined surface, the lubrication mechanism of different granular mediums was explored during granular flow lubrication.

Findings

Compared with flood lubrication, the granular flow lubrication had a significant force reduction effect, and the maximum milling force was reduced by about 30%. At the same time, the granular flow lubrication was more conducive to reducing the tool trace size, repressing surface damage and thus achieving better surface quality. The soft particles had better friction reduction performance than the hard particles with the same particle size, and the friction reduction performance of nanoscale hard particles was superior to that of microscale hard particles. The friction reduction mechanism of MoS2 and WS2 soft particles is the mending effect and adsorption film effect, whereas that of SiO2 and Al2O3 hard particles is mainly manifested as the rolling and polishing effect.

Originality/value

Granular flow lubrication was applied in the precision milling of Inconel 718 superalloy, and a comparative study was conducted on the friction reduction performance of soft particles (MoS2, WS2) and hard particles (SiO2, Al2O3). Based on the EDS spectrums and topographical features of machined surface, the friction reduction mechanism of soft and hard particles was explored.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 July 2023

Pengfei Cheng

To further understand the granular flow lubrication mechanism in metal contact pairs, the effect of sliding-rolling ratio on the force chain properties was investigated.

Abstract

Purpose

To further understand the granular flow lubrication mechanism in metal contact pairs, the effect of sliding-rolling ratio on the force chain properties was investigated.

Design/methodology/approach

The parallel inter-plate model of the granular flow lubrication was established with discrete element method. Then, the correlation law between sliding-rolling ratio and force chain evolution properties was calculated and analyzed with PFC2D software platform.

Findings

Numerical calculation results show that the dynamic fluctuation property of force chain is existed, and the shock frequency of it is increased with the increase of sliding-rolling ratio. The same evolution law is also occurred for the bearing rate of strong force chain in the initial expansion and final compression phases, and the opposite phenomena is obtained for the overall expansion phase. Moreover, the directivity of strong force chain is changed by the sliding-rolling ratio. With the increase of sliding-rolling ratio, the directivity of strong force chain is first tended to y-axis, and then inclined to the x-axis in the whole phases. The basic reason is that a clamping up and downward movement impact for the neighbor particles are the essence of the above phenomenon.

Originality/value

The main contribution of this work is to lay a theory foundation of interfacial lubrication mechanism with granular flow.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0133/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 September 2021

Gang Wang, Wei Wang, Yi Zhang, Xu Zhang, Zhaowen Hu, Kun Liu and Daogao Wei

This paper aims to investigate the micro-plastic behavior of granular material in three-body friction interface and its effect on friction characteristics.

Abstract

Purpose

This paper aims to investigate the micro-plastic behavior of granular material in three-body friction interface and its effect on friction characteristics.

Design/methodology/approach

A numerical model of particle breakage in friction contact was constructed based on the discrete element method. The influence of friction pair working condition and internal bonding strength on the micro-plastic behavior of particulate matter was analyzed. A reciprocating linear tribometer was used to verify the simulation results.

Findings

The results show that when the granular materials are squeezed and sheared by the friction pair, a shear zone inclined to the left is gradually formed, which leads to particle breakage. The breakage of the particle leads to the reduction of load-bearing capacity and the increase of friction coefficient. Due to the differences in bond strength and friction pairs working conditions, the particle plastic behavior is divided into the following three states: elastic deformation, breakage and plastic rheology.

Originality/value

This study is helpful to understand the effect of the micro-plastic behavior of particles on the three-body friction characteristics.

Details

Industrial Lubrication and Tribology, vol. 73 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 October 2019

Fanjing Meng, Minghua Pang and Kun Liu

Granular lubrication can solve some lubrication problems under many extreme operating conditions. Meanwhile, the flow constitutive relation is one of its unsolved problems in…

Abstract

Purpose

Granular lubrication can solve some lubrication problems under many extreme operating conditions. Meanwhile, the flow constitutive relation is one of its unsolved problems in fully understanding its rheological mechanism.

Design/methodology/approach

In this paper, a plane shear cell under granular lubrication is established by the discrete element method to study the flow constitutive relation and its mechanical mechanism of the hard granular lubricants.

Findings

Research results show that the flow regimes in granular flow lubrication strongly rely on the dimensionless parameter I, in which it is called the inertial coefficient. When the inertial coefficient I increase, the flow regimes of the granular lubricants also evolve from a quasi-static state to a collisional state accordingly. Comparing to the influence of the restitution coefficient, the friction coefficient of the hard granular lubricants has a strong influence on its constitutive relation of the granular flow lubrication. Finally, it is shows that the dimensionless parameter I has strong influence on the contacts and flow states of this granular lubrication system than the influence of the dimensionless parameter R.

Originality/value

These findings reveal the constitutive relation and mechanical mechanism of granular lubrication and can also offer the helpful reference for the design of the new granular lubrication bearing.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 May 2020

Xiaoyu Yan, Wei Wang, Xiaojun Liu, Jimin Xu, Lihong Zhu and Bingxun Yang

A finite element method (FEM) model of the frictional behavior of two rough surfaces with a group of third-body particles confined by the surface asperities is established. By…

Abstract

Purpose

A finite element method (FEM) model of the frictional behavior of two rough surfaces with a group of third-body particles confined by the surface asperities is established. By monitoring the stress distribution, friction force and the displacement of the surfaces, how the frictional instability is induced by these particles is studied. This modeling job aims to explore the relation between the meso-scale behavior and the macro-scale frictional behavior of these particles.

Design/methodology/approach

By using FEM, a 2D model of two frictional rough surfaces with a group of elastic or elasto-plastic particles confined by surface asperities is established. The Mises stress, macro friction force and displacements of elements are monitored during compressing and shearing steps.

Findings

The macro friction coefficient is more stable under higher pressure and smaller under higher shearing speed. The dilatancy of the interface is caused by the elevation effect of the particles sheared on the peak of the lower surface, particles collision and third body supporting. The combined effect of particles motion and surface–surface contact will induce high-frequency displacements of surface units in restricted direction.

Originality/value

Previous studies about third-body tribology are mainly concentrated on the frictional behavior with large number of particles distributed homogeneously across the interface, but this paper focuses on the behavior of third-body particles confined by surface asperities.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0544/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 July 2022

Meng Fanjing, Minghua Pang and Lijie Ma

Carbon steel has a high application rate in modern industry, but this type of steel has the defect of high wear. This study aims to improve the surface friction and wear…

55

Abstract

Purpose

Carbon steel has a high application rate in modern industry, but this type of steel has the defect of high wear. This study aims to improve the surface friction and wear performance of carbon steel under such working conditions.

Design/methodology/approach

In this study, a dry film lubricant based on graphite powder was prepared by the ultrasonic dispersion method, and deposited on the surface of carbon steel specimens by the simple pressure spraying technology. At the same time, molybdenum disulfide and polytetrafluoroethylene dry film lubricants were developed by the same method, and the comparative experimental study on friction and wear was carried out in the end-face friction tester.

Findings

The results show that the deposition effect of graphite and molybdenum disulfide dry film lubricants on the surface of carbon steel is obviously better than that of polytetrafluoroethylene dry film lubricant. Compared with molybdenum disulfide and polytetrafluoroethylene dry film lubricant, graphite dry film lubricant has the best friction and wear performance on the surface of carbon steel. The working life of carbon steel specimens sprayed with graphite dry film lubricant decreases with the increase of pressure load and rotation speed. The combination of load and sliding speed will accelerate the transition of the coating to a stable direction. In addition, the micro lubricant particles formed in the wear process will form particle flow lubrication, and the appropriate addition of particle powder of the same material will also prolong the normal antifriction time of the lubricant.

Originality/value

These findings developed a dry film lubricant that can effectively improve the friction and wear properties of carbon steel surface.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 June 2023

Junchao Kong

Powder lubrication is widely used in industrial production, but most of the research that analyze the wear process and speculate on the wear mechanism of the tested specimens…

Abstract

Purpose

Powder lubrication is widely used in industrial production, but most of the research that analyze the wear process and speculate on the wear mechanism of the tested specimens lacks reliability, and it is difficult to reveal the essence of the friction and wear process. The purpose of this paper is using the optical in situ observation method to observe the condition of the powder lubrication layer in real time and dynamically, and directly obtain the morphology change of the specimen during the whole wear process, which is helpful to the establishment of new tribological basic theories such as friction and wear mechanism and lubrication theory.

Design/methodology/approach

Mechanical model of powder lubrication is established considering asperity and powder layer, and the influence of adhesion effect on load and friction force is analyzed. The finite difference method is used to solve the above physical model, and the influence of the adhesion effect on load and friction force is analyzed. The total load and friction of the friction pair are composed of two parts: fluid and asperity. Based on the optical in situ observation method to build a test platform. The interface of the adhesion stage was observed by SEM.

Findings

When the film thickness ratio is less than 1, the local damage and diffusion of the powder layer are basically completed and the adhesion stage is entered. At this time, the asperity is not fully loaded, the powder layer is loaded by 50%, the asperity is less loaded, the deformation is small and the possibility of plastic flow is reduced. However, in the adhesion stage, the friction force is basically generated between asperity, and the friction force ratio of the asperity is 80%. Heavy load and surface roughness of the specimen are the necessary conditions for the powder adhesion period.

Practical implications

In this paper, the failure process of the powder layer at the friction interface with different roughness and load is studied based on the optical in situ observation method. Second, the contact surface with the micro-convex body and powder layer is simulated, and the influence of adhesion effect on the mechanical properties of the real contact surface in the process of powder lubrication is analyzed, thus providing theoretical guidance for mechanical processing, workpiece operation and lubrication design.

Originality/value

Mechanical model considering asperities and powder layer powder lubrication was established to analyze the influence of the adhesion effect on load and friction. Based on the optical in situ observation method to build a test platform. The tests found that the failure process of the powder lubricating layer includes five stages: powder complete stage, local failure stage, local failure diffusion stage, powder adhesion stage and complete failure stage.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0322/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 July 2021

Cong Liu, Yanguo Yin, Baohong Tong and Guotao Zhang

This study aims to investigate the effect of MoS2 powder on tribological properties of sliding interfaces.

Abstract

Purpose

This study aims to investigate the effect of MoS2 powder on tribological properties of sliding interfaces.

Design/methodology/approach

Loose MoS2 powder was introduced in the gap of point-contact friction pairs, and sliding friction test was conducted using a testing machine. Friction noise, wear mark appearance, microstructure and wear debris were characterized with a noise tester, white-light interferometer, scanning electron microscope and ferrograph, respectively. Numerical simulation was also performed to analyze the influence of MoS2 powder on tribological properties of the sliding interface.

Findings

MoS2 powder remarkably improved the lubrication performance of the sliding interface, whose friction coefficient and wear rate were reduced by one-fifth of the interface values without powder. The addition of MoS2 powder also reduced stress, plastic deformation and friction temperature in the wear mark. The sliding interface with MoS2 powder demonstrated lower friction noise and roughness compared with the interface without powder lubrication. The adherence of MoS2 powder onto the friction interface formed a friction film, which induced the wear mechanism of the sliding interface to change from serious cutting and adhesive wear to delamination and slight cutting wear under the action of normal and shear forces.

Originality/value

Tribological characteristics of the interface with MoS2 powder lubrication were clarified. This work provides a theoretical basis for solid-powder lubrication and reference for its application in engineering.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0150/

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 113