Search results

1 – 10 of over 2000
Article
Publication date: 1 January 1985

C. Taylor, J. Rance and J.O. Medwell

A method is presented for the determination of heat transfer rates in cylindrical cooling ducts which rotate about an axis orthogonal to its own axis of symmetry. The equations of…

Abstract

A method is presented for the determination of heat transfer rates in cylindrical cooling ducts which rotate about an axis orthogonal to its own axis of symmetry. The equations of motion and energy are solved in conjunction with the two equation model of turbulence (k—ε) using the finite element method. The importance of employing consistent velocity and turbulence quantities is demonstrated; the former condition is particularly relevant with respect to induced secondary flows. It was also found that comparatively minor mesh refinement had a significant effect on both the flow and the increase in heat transfer rates over those obtained for the non‐rotating case.

Details

Engineering Computations, vol. 2 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 30 October 2018

Jesús Manuel Fernandez Oro, Andrés Meana-Fernández, Monica Galdo Vega, Bruno Pereiras and José González Pérez

The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage.

Abstract

Purpose

The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage.

Design/methodology/approach

A wall-modeled large eddy simulation (WMLES) has been performed for a spanwise 3D extrusion of the central section of the fan stage. Computations were performed for three different operating conditions, from nominal (Q_N) to off-design (85 per cent Q_N and 70 per cent Q_N) working points. Circumferential periodic conditions were introduced to reduce the extent of the computational domain. The post-processing procedure enabled the segregation of unsteady deterministic features and turbulent scales. The simulations were experimentally validated using wake profiles and turbulent scales obtained from hot-wire measurements.

Findings

The transport of rotor wakes and both wake–vane and wake–wake interactions in the stator flow field have been analyzed. The description of flow separation, particularly at off-design conditions, is fully benefited from the LES performance. Rotor wakes impinging on the stator vanes generate a coherent large-scale vortex shedding at reduced frequencies. Large pressure fluctuations in the stagnation region on the leading edge of the vanes have been found.

Research limitations/implications

LES simulations have shown to be appropriate for the assessment of the design of an axial fan, especially for specific operating conditions for which a URANS model presents a lower performance for turbulence description.

Originality/value

This paper describes the development of an LES-based simulation to understand the flow mechanisms related to the rotor–stator interaction in axial fan stages.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 April 2015

Mouna Gazzah, Boubaker Jaouachi and Faouzi Sakli

The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining…

Abstract

Purpose

The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining the impact of some considered frictional parameters such as yarn-to-yarn friction expressed as weft yarn rigidity parameter and metal-to-fabric friction expressed by mean frictional coefficient parameter.

Design/methodology/approach

The statistical analysis steps were implemented using experimental design type Taguchi and thanks to Minitab 14 software. The modeling methodology analyzed in this paper deals with the linear regression method application and analysis. The predictive power of the obtained model is evaluated by comparing the estimated recovery velocity (theoretical) with the actual values. These comparative values are measured after the bagging test and during the relaxation time of the denim fabric samples. The regression coefficient (R2) values as well as the statistical tests (p-values, analysis of variance results) were investigated, discussed and analyzed to improve the findings.

Findings

According to the statistical results given by Taguchi analysis findings, the regression model is very significant (p-regression=0.04 and R2=97 percent) which explains widely the possibility of bagging behavior prediction in the studied experimental field of interest. Indeed the variation (the increase or the decrease) of the frictional input parameters values caused, as a result, the variation of the whole appearance and the shape of the bagged zone expressed by the residual bagging height variations. In spite of their similar compositions and characteristics, the woven bagged fabrics presented differently behaviors in terms of the bagging recovery and kinetic velocity values. After relaxation times which are not the same and relative to different fabric samples, it may be concluded that bagging behavior remained function of the internal frictional stresses, especially yarn-to-yarn and metal-to-fabric ones.

Practical implications

This study is interesting for denim consumers and industrial applications during long and repetitive uses. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. In fact, in terms of the importance to the industrial producers of the materials it helps to provide a first step in an attempt for a better understanding of the stresses involved in bagging of woven fabrics in general and denim fabrics particularly due to important frictional input contributions. They provide the basis for the development of fabrics that can withstand bagging problems. This research may also put forward improved methods of measuring bagginess as function of frictional parameters in order to optimize (minimize) their effects on the bagging behaviors before and after repetitive uses. These experimental, statistical and theoretical findings may be used to predict bagginess of fabrics based on their properties and prevent industrial from the most significant and influential inputs which should be adjusted accurately. This work allows industrial, also, to make more attention, in case of a high-quality level to ensure, to optimize and review yarn behaviors used to produce fabrics against drastic solicitations and minimize frictions forms during experimental spinning and weaving processes.

Originality/value

Until now, there is no sufficient information to evaluate and predict the effect of the yarn-to-yarn friction as well as metal-to-yarn one on the residual bagging behavior. Besides, there is no work that deals with the kinetic recovery evolution as function of frictional inputs to explain accurately the bagging behavior evolution during relaxation time. Therefore, this present work is to investigate and model the residual bagging recovery velocity after bagging test as function of the frictional input parameters of both denim yarn and fabric samples (expressed by the friction caused due to contact from conformator to fabric).

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 April 1994

S. Torii and W. ‐J. Yang

A theoretical study is performed to investigate turbulent flow and heattransfer characteristics in a concentric annulus with a heated inner cylindermoving in the direction of flow…

Abstract

A theoretical study is performed to investigate turbulent flow and heat transfer characteristics in a concentric annulus with a heated inner cylinder moving in the direction of flow (Couette flow). The two‐equation k‐ε model is employed to determine turbulent viscosity and kinetic energy. The Reynolds stress and turbulent heat flux are expressed by Boussinesq’s approximation. The governing boundary‐layer equations are discretized by means of a control volume finite‐difference technique and numerically solved using a marching procedure. Results are obtained for the time‐averaged streamwise velocity profile, turbulent kinetic energy profile, friction factor, and Nusselt number. These results agree well with experimental data in the existing literature. It is concluded from the study that the streamwise movement of the inner wall induces an attenuation in the turbulent kinetic energy, resulting in a reduction in the heat transfer performance and an increase in the velocity ratio of the moving inner cylinder to the fluid flow causes a substantial decrease in both the friction factor and the Nusselt number as well as a drastic reduction in the turbulent kinetic energy in the inner wall region.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2017

Bian Tian, Huafeng Li, Ning Yang, Yulong Zhao, Pei Chen and Hanyue Liu

It is significant to know the real-time indexes about the turbulence flow of the ocean system, which has a deep influence on ocean productivity, distribution of the ocean…

293

Abstract

Purpose

It is significant to know the real-time indexes about the turbulence flow of the ocean system, which has a deep influence on ocean productivity, distribution of the ocean populations and transmission of the ocean energy, especially the measurement of turbulence flow velocity. So, it is particularly urgent to provide a high-sensitivity, low-cost and reliable fluid flow sensor for industry and consumer product application. This paper aims to design a micro fluid flow sensor with a cross beam membrane structure. The designed sensor can detect the fluid flow velocity and has a low kinetic energy dissipation rate.

Design/methodology/approach

In this paper, a micro fluid flow sensor with a cross beam membrane structure is designed to measure the ocean turbulence flow velocity. The design, simulation, fabrication and measurement of the designed sensor are discussed. By testing the simply packaged sensor in the fluid flow and analyzing the experiments data, the results show that the designed sensor has favorable performance.

Findings

The paper describes the tests of the designed sensor, and the experimental results show that the designed sensor can measure the fluid flow velocity and has a sensitivity of 11.12 mV/V/(m/s)2 and a low kinetic energy dissipation rate in the range of 10-6-10-4 W/kg.

Originality/value

This paper provides a micro-electro-mechanical systems fluid flow sensor used to measure ocean turbulence flow velocity.

Details

Sensor Review, vol. 37 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 July 2018

Michał T. Lewandowski, Paweł Płuszka and Jacek Pozorski

This paper aims to assess the sensitivity of numerical simulation results of turbulent reactive flow to the formulation of inlet boundary conditions. The analysis concerns the…

Abstract

Purpose

This paper aims to assess the sensitivity of numerical simulation results of turbulent reactive flow to the formulation of inlet boundary conditions. The analysis concerns the profiles of the mean velocity the turbulence kinetic energy k and its dissipation rate ϵ. It is intended to provide guidance to the determination of inlet conditions when only global flow data are available. This situation can be met both in simple laboratory experiments and in industrial full-scale applications, when measurements are either incomplete or infeasible, resulting in lack of detailed inlet data.

Design/methodology/approach

Two turbulence–chemistry interaction models were studied: eddy dissipation concept and partially stirred reactor. Three different velocity profiles and related turbulence statistics were applied to present feasible scenarios and their consequences. Simulations with the most appropriate inlet data were accompanied with profiles of turbulent quantities obtained with a proposed method. This method was contrasted to other approaches popular in the literature: the pre-inlet pipe and the separate cold flow simulations of a burner. The methodology was validated on two laboratory-scale jet flames: Delft Jet-in-Hot-Coflow and Sandia CHN B. The simulations were carried out with open source code OpenFOAM.

Findings

The proposed relations for turbulence kinetic energy and its dissipation rate at the inlet are found to provide results comparable to those obtained with the use of experimental data as inlet boundary conditions. Moreover, from a certain location downstream the jet, weakly dependent on the Reynolds number, the influence of inlet conditions on flow statistics was found to be negligible.

Originality/value

This work reveals the consequences of the use of rather crude assumptions made for inlet boundary conditions. Proposed formulas for the profiles for k and epsilon are attractive alternatives to other approaches aiming to determine the inlet boundary conditions for turbulent jet flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2013

Maher Raddaoui

Rotating flows are very important because they are found in industrial and domestic applications. For a good performance, it is important to dimension correctly the energy…

Abstract

Purpose

Rotating flows are very important because they are found in industrial and domestic applications. For a good performance, it is important to dimension correctly the energy efficiency and the lifespan of the apparatuses while studying, for example, the influence of their physical and geometrical characteristics on the various hydrodynamic constraints, thermal and mechanics which they will support. The purpose of this paper is to describe experiments and a numerical study of the inter‐disc space effects on the mean and the turbulent characteristics of a Von Karman isotherm steady flow between counter‐rotating disks.

Design/methodology/approach

Experimental results are obtained by the laser Doppler anemometer technique performed at IRPHE (Institute of Research on the Phenomena out Equilibrium) in Marseille, France. The numerical predictions are based on one‐point statistical modeling using a low Reynolds number second‐order full stress transport closure (RSM model).

Findings

It was found that the level of radial velocity increases with the aspect ratio near to the axis of rotation but this phenomenon is reversed far from this zone; the level of tangential velocity, of turbulence kinetic energy and of the torsion are definitely higher for the largest aspect ratio. The best contribution of this work is, at the same time, the new experimental and numerical database giving the effect of the aspect ratio of the cavity on the intensity of turbulence for Von Karman flow between two counter rotating disks.

Research limitations/implications

The limitation of this work is that it concerns rotating flows with very high speeds because the phenomena of instability appear and the application of this model for cavities of forms is not obvious.

Practical implications

This work is of technological interest; it can be exploited by industrialists to optimize the operation of certain machines using this kind of flow. It can be exploited in the teaching of certain units of Masters courses: gathering experimental techniques; numerical methods; and theoretical knowledge.

Social implications

This work can also have a social interest where this kind of simulation can be generalized with other types of flows responsible for certain phenomena of society, such as the phenomenon of pollution. This work can have a direct impact on everyday life by the exploitation of the rotary flows, such as being a very clean and very economic means to separate the undesirable components present in certain fluid effluents.

Originality/value

The best contribution of this work is the new experimental and numerical database giving the effect of the aspect ratio of the cavity on the intensity of turbulence for Von Karman flow between two counter rotating disks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 August 2011

Yaser Jafarian, Mohammad H. Baziar, Mohammad Rezania and Akbar A. Javadi

In this paper, the peak kinetic energy density (KED) of soil particles during earthquake excitation is used as an intensity measure for the evaluation of liquefaction potential…

Abstract

Purpose

In this paper, the peak kinetic energy density (KED) of soil particles during earthquake excitation is used as an intensity measure for the evaluation of liquefaction potential under field conditions. The paper seeks to discuss this measure.

Design/methodology/approach

Using centrifuge tests data, it is shown that seismic pore water pressure buildup is proportional to cumulative KED at a particular soil depth. Linear relationships are found between cumulative kinetic energy and corresponding cumulative strain energy. To consider the effect of soil amplification, several equivalent linear ground response analyses are performed and the results are used to derive an equation for depth reduction factor of peak kinetic energy density. Two separate databases of liquefaction case histories are used in order to validate the proposed model. The performance of the proposed model is compared with a number of commonly used shear stress‐based liquefaction assessment methods. Finally, the logistic regression method is employed to obtain probabilistic boundary curves based on the present model. Parametric study of the proposed probabilistic model is carried out to verify its agreement with the previous methods.

Findings

It has been shown that the kinetic energy model works satisfactorily in classifying liquefied and non‐liquefied cases compared with the existing recommendations of shear stress‐based criterion. The results of the probabilistic kinetic energy model are in good agreement with those of previous studies and show a reasonable trend with respect to the variations of fines content and effective overburden pressure. The proposed model can be as used an alternative approach for assessment of liquefaction potential.

Originality/value

These findings make a sound basis for the development of a kinetic energy‐based method for assessment of liquefaction potential.

Details

Engineering Computations, vol. 28 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1995

Shuichi Torii and Wen‐Jei Yang

A numerical study is performed to investigate turbulent flowcharacteristics in a pipe rotating around the axis. Emphasis is placed on theeffect of pipe rotation on the friction…

Abstract

A numerical study is performed to investigate turbulent flow characteristics in a pipe rotating around the axis. Emphasis is placed on the effect of pipe rotation on the friction coefficient and velocity distribution in the hydrodynamically, fully‐developed flow region. The k—ε turbulence model is modified by taking the swirling effect into account, in which the model function including the Richardson number is introduced to the ε equation. The governing boundary‐layer equations are discretized by means of a control volume finite‐difference technique for numerical computation. Results obtained from the modified model agree well with experiment data in the existing literature. It is found from the study that (i) an axial rotation of the pipe induces an attenuation in the turbulent kinetic energy, resulting in a reduction in the friction coefficient, the turbulent and (ii) an increase in the velocity ratio causes substantial decreases in the friction coefficient, the turbulent kinetic energy and the streamwise velocity gradient near the wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 September 2009

S. Kubacki and E. Dick

This paper aims to provide improvements to the newest version of the k‐ ω turbulence model of Wilcox for convective heat transfer prediction in turbulent axisymmetric jets…

Abstract

Purpose

This paper aims to provide improvements to the newest version of the k‐ ω turbulence model of Wilcox for convective heat transfer prediction in turbulent axisymmetric jets impinging onto a flat plate.

Design/methodology/approach

Improvements to the heat transfer prediction in the impingement zone are obtained using the stagnation flow parameter of Goldberg and the vortex stretching parameter of Wilcox. The third invariant of the strain rate tensor in the form of Shih et al. and the blending function of Menter are applied in order make negligible the influence of the impingement modifications in the benchmark flows for turbulence models. Further, it is demonstrated that for two‐dimensional jets impinging onto a flat plate the stagnation region Nusselt number predicted by the original k‐ ω model is in good agreement with direct numerical simulation (DNS) and experimental data. Also for two‐dimensional jets, the proposed modification is deactivated.

Findings

The proposed modification has been applied to improve the convective heat transfer predictions in the stagnation flow regions of axisymmetric jets impinging onto a flat plate with nozzle‐plate distances H/D = 2, 6, 10 and Reynolds numbers Re = 23,000 and 70,000. Comparison of the predicted and experimental mean and fluctuating velocity profiles is performed. The heat transfer rates along a flat plate are compared to experimental data. Significant improvements are obtained with respect to the original k‐ ω model.

Originality/value

The proposed modification is simple and can be added to the k‐ ω model without causing stability problems in the computations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000