Search results

1 – 5 of 5
Article
Publication date: 28 December 2021

Karthie S., Zuvairiya Parveen J., Yogeshwari D. and Venkadeshwari E.

The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a…

104

Abstract

Purpose

The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications.

Design/methodology/approach

In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF.

Findings

The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works.

Originality/value

In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 August 2019

Karthie S. and Salivahanan S.

This paper aims to present the design of a novel triangular-shaped wideband microstrip bandpass filter implemented on a low-cost substrate with a notched band for interference…

87

Abstract

Purpose

This paper aims to present the design of a novel triangular-shaped wideband microstrip bandpass filter implemented on a low-cost substrate with a notched band for interference rejection.

Design/methodology/approach

The conventional dual-stub filter is embedded with simple fractal-based triangular-circular geometries through various iterations to reject wireless local area network (WLAN) signals with a notched band at 5.8 GHz.

Findings

The filter covers a wide frequency band from 3.1 to 8.8 GHz and has a fractional bandwidth of 98 per cent with the lower passband of 57.5 per cent and upper passband of 31.6 per cent separated by a notched band at 5.8 GHz. The proposed wideband prototype bandpass filter is fabricated in FR-4 substrate using PCB technology and the simulation results are validated with measurement results which include insertion loss, return loss and group delay. The fabricated filter has a sharp rejection of 28.3 dB at 5.8 GHz. Measured results show good agreement with simulated responses. The performance of the fractal-based wideband filter is compared with other wideband bandpass filters.

Originality/value

In the proposed work, a fractal-based wideband bandpass filter with a notched band is reported. The conventional dual-stub filter is deployed with triangular-circular geometry to design a wideband filter with a notched band to suppress interference signals at WLAN frequency. The proposed wideband filter exhibits smaller size and better interference rejection compared to other wideband bandpass filter designs implemented on low-cost substrate reported in the literature. The aforementioned wideband filter finds application in wideband wireless communication systems.

Details

Circuit World, vol. 45 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 July 2020

Keyur Mahant, Hiren K. Mewada, Amit V. Patel, Alpesh Vala and Jitendra Chaudhari

This paper aims to present, design and implement a novel half-mode substrate integrated waveguide (HMSIW)-based narrow bandpass filter, which offers advantages like low insertion…

Abstract

Purpose

This paper aims to present, design and implement a novel half-mode substrate integrated waveguide (HMSIW)-based narrow bandpass filter, which offers advantages like low insertion loss, compact size and high selectivity. Proposed filter will be used in the K-band automotive radar application.

Design/methodology/approach

The filtering response in the proposed design is achieved by inserting inductive posts in the HMSIW cavity. Ansoft high frequency structure Simulator (HFSS) is used for the simulation of the proposed structure, which is a three-dimensional full-wave solver using the finite element method (FEM). The proposed filter is fabricated on the dielectric material RT duroid 5,880 with the dielectric constant ɛr = 2.2, dissipation factor t and = 4 × 10–4 and height h = 0.508 mm.

Findings

Frequency tuning is also carried out by changing the lateral distance between two inductive posts. Moreover, a comparison of the proposed structure with the previously published work is presented. Proposed method provides the unique advantages such as low insertion loss, high selectivity and compact in size.

Originality/value

Indigenous method has been used for the development of the filter. Proposed filter will be used in transmitter subsystem of the K-band radar system operating at the center frequency of 11.2 GHz. Measurement results are well-matched with the simulated one. Obtained measured result shows return loss of 20.39 dB and insertion loss of 1.59 dB with 3 dB fractional bandwidth (FBW) of 2.58% at the center frequency of 11.2 GHz.

Details

Circuit World, vol. 47 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 10 May 2022

Ponnammal P. and Manjula J.

This paper is aimed to study the design of a miniaturized filter with tri-band characteristics. In this paper, perturbation is used to realize circuit miniaturization and…

Abstract

Purpose

This paper is aimed to study the design of a miniaturized filter with tri-band characteristics. In this paper, perturbation is used to realize circuit miniaturization and multi-band by exploiting the inductive property. During this process, vias are added for twofold benefit, namely, circuit miniaturization and enhanced frequency selectivity at high frequency. Thus, with the introduction of the shorting via, the single-band dual-mode bandpass filter is converted into a tri-band filter with a smaller electrical size.

Design/methodology/approach

This paper presents the design and characterization of a miniaturized two-port filter with tri-band operating characteristics. The proposed filter is constructed using a square patch resonator operating at 5.2 GHz with a capacitively coupled feed configuration. A square perturbation is added to the corner of the square patch to achieve diagonal symmetry and to excite dual mode. The perturbation offers a sharp transmission zero defining bandwidth of the proposed filter. In addition, a shorting post is introduced to achieve an 88% size reduction by lowering the operating frequency to 1.8 GHz.

Findings

The prototype filter has insertion less than 1.2 dB and return loss better than 12 dB throughout all the realized frequency bands. The prototype filter is fabricated and the simulation results are validated using experimental measurements. The realized fractional bandwidths of the proposed bandpass filter are 11/5.6/1 at 1.8/4.6/5.85 GHz, respectively. The quality factor of the proposed antenna is greater than 80 and a peak Q-factor of 387 is realized at 5.85 GHz. The high Q-factor indicates low loss and improved selectivity. The rejection levels in the stopband are greater than 20 dB.

Originality/value

The results indicate that the proposed filter is a suitable choice for low-power small-scale wireless systems operating in the microwave bands. The realized filter has the smallest footprint of 0.36λeff  × 0.19λeff where λeff is the effective wavelength calculated at the lowest frequency of operation.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 September 2020

Sandhya Ramalingam, Umma Habiba Hyder Ali and Sharmeela Chenniappan

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring…

Abstract

Purpose

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring resonator is introduced in the single-layer SIW bandpass filter. The various coupling configurations of SIW bandpass filter using split square ring slot resonator is designed to obtain dual resonant mode in the passband. It is shown that the measured results agree with the simulated results to meet compact size, lower the transmission coefficient, better reflection coefficient, sharp sideband rejection and minimal group delay.

Design/methodology/approach

A spurious suppression of wideband response is suppressed using an open stub in the transmission line. The width and length of the stub are tuned to suppress the wideband spurs in the stopband. The measured 3 dB bandwidth is from 8.76 to 14.24 GHz with a fractional bandwidth of 48.04% at a center frequency of 11.63 GHz, 12.59 GHz. The structure is analyzed using the equivalent circuit model, and the simulated analysis is based on an advanced design system software.

Findings

This paper discusses the characteristics of resonator below the waveguide cut-off frequency with their working principles and applications. Considering the difficulties in combining the resonators with a metallic waveguide, a new guided wave structure – the SIW is designed, which is synthesized on a planar substrate with linear periodic arrays of metallized via based on the printed circuit board.

Originality/value

This study has investigated the wave propagation problem of the SIW loaded by square ring slot-loaded resonator. The electric dipole nature of the resonator has been used to achieve a forward passband in a waveguide environment. The proposed filters have numerous advantages such as high-quality factor, low insertion loss, easy to integrate with the other planar circuits and, most importantly, compact size.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Access

Year

Content type

Article (5)
1 – 5 of 5