Search results

1 – 10 of over 5000
Article
Publication date: 17 October 2022

Jianbo Zhu, Qianqian Shi, Ce Zhang, Jingfeng Yuan, Qiming Li and Xiangyu Wang

Promoting low-carbon in the construction industry is important for achieving the overall low-carbon goals. Public–private partnership is very popular in public infrastructure…

Abstract

Purpose

Promoting low-carbon in the construction industry is important for achieving the overall low-carbon goals. Public–private partnership is very popular in public infrastructure projects. However, different perceptions of low-carbon and behaviors of public and private sectors can hinder the realization of low-carbon in these projects. In order to analyze the willingness of each stakeholder to cooperate towards low-carbon goals, an evolutionary game model is constructed.

Design/methodology/approach

An evolutionary game model that considers the opportunistic behavior of the participants is developed. The evolutionary stable strategies (ESSs) under different scenarios are examined, and the factors that influence the willingness to cooperate between the government and private investors are investigated.

Findings

The results illustrate that a well-designed system of profit distribution and subsidies can enhance collaboration. Excessive subsidies have negative impact on cooperation between the two sides, because these two sides can weaken income distribution and lead to the free-riding behavior of the government. Under the situation of two ESSs, there is also an optimal revenue distribution coefficient that maximizes the probability of cooperation. With the introduction of supervision and punishment mechanism, the opportunistic behavior of private investors is effectively constrained.

Originality/value

An evolutionary game model is developed to explore the cooperation between the public sector and the private sector in the field of low-carbon construction. Based on the analysis of the model, this paper summarizes the conditions and strategies that can enable the two sectors to cooperate.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 17 May 2024

Debolina Saha and Somaiya Begum

Climate change is a bitter truth for the entire humanity, and it vehemently calls for thoughtful means for environmental protection along with sustainable economic growth…

Abstract

Climate change is a bitter truth for the entire humanity, and it vehemently calls for thoughtful means for environmental protection along with sustainable economic growth. International trade blocs fundamentally represent amalgamation of countries to achieve unified goals like higher living standards, reduced trade barriers, freer labour mobility across member states, social and cultural upliftment, political allegiance to regional association, etc. Throughout the 1990s, these trade blocs have committed to reducing environmental pressures and shifting towards cleaner forms of energy. This chapter examines the relationship between rate of change in carbon dioxide (CO2) emissions per capita and rate of change in per capita gross domestic product (GDP) in linear, quadratic and cubic polynomial forms with the other control variables like inflow of foreign direct investment (FDI), export of goods and services, population density, urban population percentage and location dummies for the 66 countries falling in seven regional trade blocs. Other than the European Union and North American Free Trade Agreement (NAFTA), the remaining five trade blocs in the study – Association of South-East Nations (ASEAN), South Asian Association for Regional Cooperation (SAARC), Common Market for Eastern and South Africa (COMESA), Mercado Común del Sur (MERCOSUR) and Commonwealth of Independent States (CIS) – contain mostly the developing and some of the fastest growing economies of the world. The panel regression result finds an inverse relationship between rate of change in per capita CO2 emissions and rate of change in GDP per capita (in linear and cubic polynomial forms), exports and population density, while the other coefficients of the explanatory variables are positive. The study also establishes an Environmental Kuznets Curve (EKC) which is opposite to N-shape during 2005–2019, and that contradicts with the original EKC of inverted U-shaped. However, this shape admits the collective efforts of region-specific trade blocs towards achieving clean environment which is one of the important global goals.

Details

International Trade, Economic Crisis and the Sustainable Development Goals
Type: Book
ISBN: 978-1-83753-587-3

Keywords

Article
Publication date: 26 December 2023

Yan Li, Ming K. Lim, Weiqing Xiong, Xingjun Huang, Yuhe Shi and Songyi Wang

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental…

Abstract

Purpose

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental friendliness. Considering the limited battery capacity of electric vehicles, it is vital to optimize battery charging during the distribution process.

Design/methodology/approach

This study establishes an electric vehicle routing model for cold chain logistics with charging stations, which will integrate multiple distribution centers to achieve sustainable logistics. The suggested optimization model aimed at minimizing the overall cost of cold chain logistics, which incorporates fixed, damage, refrigeration, penalty, queuing, energy and carbon emission costs. In addition, the proposed model takes into accounts factors such as time-varying speed, time-varying electricity price, energy consumption and queuing at the charging station. In the proposed model, a hybrid crow search algorithm (CSA), which combines opposition-based learning (OBL) and taboo search (TS), is developed for optimization purposes. To evaluate the model, algorithms and model experiments are conducted based on a real case in Chongqing, China.

Findings

The result of algorithm experiments illustrate that hybrid CSA is effective in terms of both solution quality and speed compared to genetic algorithm (GA) and particle swarm optimization (PSO). In addition, the model experiments highlight the benefits of joint distribution over individual distribution in reducing costs and carbon emissions.

Research limitations/implications

The optimization model of cold chain logistics routes based on electric vehicles provides a reference for managers to develop distribution plans, which contributes to the development of sustainable logistics.

Originality/value

In prior studies, many scholars have conducted related research on the subject of cold chain logistics vehicle routing problems and electric vehicle routing problems separately, but few have merged the above two subjects. In response, this study innovatively designs an electric vehicle routing model for cold chain logistics with consideration of time-varying speeds, time-varying electricity prices, energy consumption and queues at charging stations to make it consistent with the real world.

Details

Industrial Management & Data Systems, vol. 124 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 8 May 2024

Lu Xu, Shuang Cao and Xican Li

In order to explore a new estimation approach of hyperspectral estimation, this paper aims to establish a hyperspectral estimation model of soil organic matter content with the…

Abstract

Purpose

In order to explore a new estimation approach of hyperspectral estimation, this paper aims to establish a hyperspectral estimation model of soil organic matter content with the principal gradient grey information based on the grey information theory.

Design/methodology/approach

Firstly, the estimation factors are selected by transforming the spectral data. The eigenvalue matrix of the modelling samples is converted into grey information matrix by using the method of increasing information and taking large, and the principal gradient grey information of modelling samples is calculated by using the method of pro-information interpolation and straight-line interpolation, respectively, and the hyperspectral estimation model of soil organic matter content is established. Then, the positive and inverse grey relational degree are used to identify the principal gradient information quantity of the test samples corresponding to the known patterns, and the cubic polynomial method is used to optimize the principal gradient information quantity for improving estimation accuracy. Finally, the established model is used to estimate the soil organic matter content of Zhangqiu and Jiyang District of Jinan City, Shandong Province.

Findings

The results show that the model has the higher estimation accuracy, among the average relative error of 23 test samples is 5.7524%, and the determination coefficient is 0.9002. Compared with the commonly used methods such as multiple linear regression, support vector machine and BP neural network, the hyperspectral estimation accuracy of soil organic matter content is significantly improved. The application example shows that the estimation model proposed in this paper is feasible and effective.

Practical implications

The estimation model in this paper not only fully excavates and utilizes the internal grey information of known samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a new hyperspectral estimation model of soil organic matter content based on the principal gradient grey information and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 29 March 2024

Jianping Zhang, Leilei Wang and Guodong Wang

With the rapid advancement in the automotive industry, the friction coefficient (FC), wear rate (WR) and weight loss (WL) have emerged as crucial parameters to measure the…

38

Abstract

Purpose

With the rapid advancement in the automotive industry, the friction coefficient (FC), wear rate (WR) and weight loss (WL) have emerged as crucial parameters to measure the performance of automotive braking systems, so the FC, WR and WL of friction material are predicted and analyzed in this work, with an aim of achieving accurate prediction of friction material properties.

Design/methodology/approach

Genetic algorithm support vector machine (GA-SVM) model is obtained by applying GA to optimize the SVM in this work, thus establishing a prediction model for friction material properties and achieving the predictive and comparative analysis of friction material properties. The process parameters are analyzed by using response surface methodology (RSM) and GA-RSM to determine them for optimal friction performance.

Findings

The results indicate that the GA-SVM prediction model has the smallest error for FC, WR and WL, showing that it owns excellent prediction accuracy. The predicted values obtained by response surface analysis are closed to those of GA-SVM model, providing further evidence of the validity and the rationality of the established prediction model.

Originality/value

The relevant results can serve as a valuable theoretical foundation for the preparation of friction material in engineering practice.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 November 2023

Flavian Emmanuel Sapnken, Mohammed Hamaidi, Mohammad M. Hamed, Abdelhamid Issa Hassane and Jean Gaston Tamba

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic…

50

Abstract

Purpose

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).

Design/methodology/approach

Specifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.

Findings

Results show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.

Originality/value

These interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 November 2023

Hao Xiang

It is of a great significance for the health monitoring of a liquid rocket engine to build an accurate and reliable fault prediction model. The thrust of a liquid rocket engine is…

Abstract

Purpose

It is of a great significance for the health monitoring of a liquid rocket engine to build an accurate and reliable fault prediction model. The thrust of a liquid rocket engine is an important indicator for its health monitoring. By predicting the changing value of the thrust, it can be judged whether the engine will fail at a certain time. However, the thrust is affected by various factors, and it is difficult to establish an accurate mathematical model. Thus, this study uses a mixture non-parametric regression prediction model to establish the model of the thrust for the health monitoring of a liquid rocket engine.

Design/methodology/approach

This study analyzes the characteristics of the least squares support vector regression (LS-SVR) machine . LS-SVR is suitable to model on the small samples and high dimensional data, but the performance of LS-SVR is greatly affected by its key parameters. Thus, this study implements the advanced intelligent algorithm, the real double-chain coding target gradient quantum genetic algorithm (DCQGA), to optimize these parameters, and the regression prediction model LSSVRDCQGA is proposed. Then the proposed model is used to model the thrust of a liquid rocket engine.

Findings

The simulation results show that: the average relative error (ARE) on the test samples is 0.37% when using LS-SVR, but it is 0.3186% when using LSSVRDCQGA on the same samples.

Practical implications

The proposed model of LSSVRDCQGA in this study is effective to the fault prediction on the small sample and multidimensional data, and has a certain promotion.

Originality/value

The original contribution of this study is to establish a mixture non-parametric regression prediction model of LSSVRDCQGA and properly resolve the problem of the health monitoring of a liquid rocket engine along with modeling the thrust of the engine by using LSSVRDCQGA.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 3 October 2022

Libiao Bai, Shuyun Kang, Kaimin Zhang, Bingbing Zhang and Tong Pan

External stakeholder risks (ESRs) caused by unfavorable behaviors hinder the success of project portfolios (PPs). However, due to complex project dependency and numerous risk…

340

Abstract

Purpose

External stakeholder risks (ESRs) caused by unfavorable behaviors hinder the success of project portfolios (PPs). However, due to complex project dependency and numerous risk causality in PPs, assessing ESRs is difficult. This research aims to solve this problem by developing an ESR-PP two-layer fuzzy Bayesian network (FBN) model.

Design/methodology/approach

A two-layer FBN model for evaluating ESRs with risk causality and project dependency is proposed. The directed acyclic graph (DAG) of an ESR-PP network is first constructed, and the conditional probability tables (CPTs) of the two-layer network are further presented. Next, based on the fuzzy Bayesian network, key variables and the impact of ESRs are assessed and analyzed by using GeNIe2.3. Finally, a numerical example is used to demonstrate and verify the application of the proposed model.

Findings

The proposed model is a useable and effective approach for ESR assessment while considering risk causality and project dependency in PPs. The impact of ESRs on PP can be calculated to determine whether to control risk, and the most critical and heavily contributing risks and project(s) in the developed model are identified based on this.

Originality/value

This study extends prior research on PP risk in terms of stakeholders. ESRs that have received limited attention in the past are explored from an interaction perspective in the PP domain. A new two-layer FBN model considering risk causality and project dependency is proposed, which can synthesize different dependencies between projects.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 April 2024

Bingwei Gao, Hongjian Zhao, Wenlong Han and Shilong Xue

This study proposes a predictive neural network model reference decoupling control method for the coupling problem between the leg joints of hydraulic quadruped robots, and…

Abstract

Purpose

This study proposes a predictive neural network model reference decoupling control method for the coupling problem between the leg joints of hydraulic quadruped robots, and verifies its decoupling effect..

Design/methodology/approach

The machine–hydraulic cross-linking coupling is studied as the coupling behavior of the hydraulically driven quadruped robot, and the mechanical dynamics coupling force of the robot system is controlled as the disturbance force of the hydraulic system through the Jacobian matrix transformation. According to the principle of multivariable decoupling, a prediction-based neural network model reference decoupling control method is proposed; each module of the control algorithm is designed one by one, and the stability of the system is analyzed by the Lyapunov stability theorem.

Findings

The simulation and experimental research on the robot joint decoupling control method is carried out, and the prediction-based neural network model reference decoupling control method is compared with the decoupling control method without any decoupling control method. The results show that taking the coupling effect experiment between the hip joint and knee joint as an example, after using the predictive neural network model reference decoupling control method, the phase lag of the hip joint response line was reduced from 20.3° to 14.8°, the amplitude attenuation was reduced from 1.82% to 0.21%, the maximum error of the knee joint coupling line was reduced from 0.67 mm to 0.16 mm and the coupling effect between the hip joint and knee joint was reduced from 1.9% to 0.48%, achieving good decoupling.

Originality/value

The prediction-based neural network model reference decoupling control method proposed in this paper can use the neural network model to predict the next output of the system according to the input and output. Finally, the weights of the neural network are corrected online according to the predicted output and the given reference output, so that the optimization index of the neural network decoupling controller is extremely small, and the purpose of decoupling control is achieved.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 28 February 2024

Dat Tien Doan, Tuyet Phuoc Anh Mai, Ali GhaffarianHoseini, Amirhosein Ghaffarianhoseini and Nicola Naismith

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Abstract

Purpose

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Design/methodology/approach

A combination of bibliometric and qualitative analysis is adopted to examine 1,957 MMC articles in the Scopus database. With the support of CiteSpace 6.1.R6, the clusters, leading authors, journals, institutions and countries in the field of MMC are examined.

Findings

Offsite construction, inter-modular connections, augmenting output, prefabricated concrete beams and earthquake-resilient prefabricated beam–column steel joints are the top five research areas in MMC. Among them, offsite construction and inter-modular connections are significantly focused, with many research articles. The potential for collaboration, among prominent authors such as Wang, J., Liu, Y. and Wang, Y., explains the recent rapid growth of the MMC field of research. With a total of 225 articles, Engineering Structures is the journal that has published the most articles on MMC. China is the leading country in this field, and the Ministry of Education China is the top institution in MMC.

Originality/value

The findings of this study bear significant implications for stakeholders in academia and industry alike. In academia, these insights allow researchers to identify research gaps and foster collaboration, steering efforts toward innovative and impactful outcomes. For industries using MMC practices, the clarity provided on MMC techniques facilitates the efficient adoption of best practices, thereby promoting collaboration, innovation and global problem-solving within the construction field.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 5000