Search results

1 – 10 of over 1000
Article
Publication date: 1 July 2006

Y. Zhang

To develop a fairly different EHL inlet zone analysis for investigating the contact‐lubricant interfacial limiting shear stress effect on line contact EHL film thickness in…

Abstract

Purpose

To develop a fairly different EHL inlet zone analysis for investigating the contact‐lubricant interfacial limiting shear stress effect on line contact EHL film thickness in isothermal conditions. This analysis is purposed to give fast and qualitatively correct results.

Design/methodology/approach

A Grubin‐like EHL inlet zone analysis is derived with closed form of the analytical results of the EHL film thickness, the EHL film pressure, the contact‐lubricant interfacial shear stress and the contact‐lubricant interfacial slipping velocity in the EHL inlet zone based on the assumption of the contact‐lubricant interfacial limiting shear stress in the EHL inlet zone. In this analysis, the lubricant is allowed to slip at the contact surface; The inlet contact surface shape is known from results referenced in this paper; The physical condition for the presence of the film slippage is incorporated; The lubricated area is divided into different kinds of film slippage zones where are, respectively, applied different governing equations. Three deterministic equations in this analysis are obtained and solving these coupled equations gives the solutions of the boundaries of the slip zone and the percentage reduction of the central film thickness by the contact‐lubricant interfacial limiting shear stress effect in this EHL.

Findings

Compared with the earlier approaches to the present problem, the present analysis has the advantage of giving fast and qualitatively correct solutions. The results obtained from the present analysis show that the contact‐lubricant interfacial limiting shear stress effect on EHL film thickness is usually strong when the contact‐lubricant interfacial limiting shear stress in the EHL inlet zone is low; This effect can greatly reduce the global EHL film thickness especially in severe operating conditions.

Practical implications

A very useful material for the academic researcher and the engineer who are engaged in the study and measurement of the effect of the contact‐lubricant interfacial limiting shear stress on EHL film thickness and EHL film pressure.

Originality/value

A fairly different EHL inlet zone analysis is originally developed based on the assumption of the contact‐lubricant interfacial limiting shear stress in the EHL inlet zone. The physical condition for the contact‐lubricant interfacial slippage is first incorporated in this analysis. Deterministic governing equations in this analysis are derived and solving these coupled equations gives the final solutions of the present problem. This analysis has the advantage of giving fast and qualitatively correct solutions. It convincible shows the contact‐lubricant interfacial limiting shear stress effect on EHL film thickness and EHL film pressure in the present EHL.

Details

Industrial Lubrication and Tribology, vol. 58 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2015

Ismail Bensaid, Bachir Kerboua and Cheikh Abdelmajid

The purpose of this paper is to develop a new improved solution and a new model to predict both shear and normal interfacial stress in simply supported beams strengthened with…

Abstract

Purpose

The purpose of this paper is to develop a new improved solution and a new model to predict both shear and normal interfacial stress in simply supported beams strengthened with bonded prestressed FRP laminates by taking into account the fiber volume fraction spacing that play an important role on the interfacial stresses concentration.

Design/methodology/approach

The study has been conducted by using analytical approaches for interfacial stresses in plated beams. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In addition, an unrealistic restriction of the same curvatures in the RC beam and FRP panel commonly used in most of the existing studies is released in the present theoretical formulation.

Findings

To verify the analytical model, the present predictions are compared first with those of (Malek et al., 1998; Smith and Teng, 2001) in the case of the absence of the prestressing force; for the second time, the present method is compared with that developed by (Al-Emrani and Kliger, 2006; Benachour et al., 2008) in the case where only the prestressing force is applied. From the presented results, it can be seen that the present solution agree closely with the other methods in the literature.

Originality/value

The paper puts in evidence a new originality approach theory, taking into account the mechanical load, and the prestressed FRP plate model having variable fiber spacing which considers a strength rigidity and resistance of the damaged structures, which is one aspect that has not been taken into account by the previous studies.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 2004

Y. Zhang

This paper studies elastohydrodynamic lubrication (EHL) of line contacts for the slide‐roll ratios 0‐2 based on the assumptions of interfacial shear strength and interfacial slip…

Abstract

This paper studies elastohydrodynamic lubrication (EHL) of line contacts for the slide‐roll ratios 0‐2 based on the assumptions of interfacial shear strength and interfacial slip. It is shown that the viscoelastic, viscoplastic and non‐continuum fluids distribute from the inlet zone to the Hertzian contact zone in order for a given operating condition when the load and rolling speed exceed critical values. For the rolling speed below the critical, the distributing fluids from the inlet zone to the Hertzian contact zone in order are viscoelastic and non‐continuum when the load exceeds a critical value. These show a multirheological behavior EHL film, formed in a contact, which may represent a mode of mixed lubrication. For this mode of lubrication, the fluid model should handle both inlet and Hertzian contact zones where the fluids are, respectively, continuum and non‐continuum. A new EHL analysis and theory, therefore needs to be established.

Details

Industrial Lubrication and Tribology, vol. 56 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 February 2014

Shiuh-Chuan Her and Shou-Jan Liu

Carbon nanotubes (CNTs) with exceptional mechanical, thermal and electrical properties are considered to be ideal for reinforcing high-performance structures. The interfacial

Abstract

Purpose

Carbon nanotubes (CNTs) with exceptional mechanical, thermal and electrical properties are considered to be ideal for reinforcing high-performance structures. The interfacial stresses between the CNTs and surrounding matrix are important phenomena which critically govern the mechanical properties of CNTs-reinforced nanocomposites. A number of methods have been proposed to investigate the stress transfer across the CNT/matrix interface, such as experimental measurement and molecular dynamics (MDs). Experimental tests are difficulty and expensive. MDs simulations, on the other hand, are computationally inefficient. The purpose of this paper is to present a reasonably simplified model. Incorporating the simplified model, the analytical expressions of the interface stresses including the shear stress and longitudinal normal stress are obtained.

Design/methodology/approach

The analytical model consists of two concentric cylinders, namely a single-walled carbon nanotube (SWCNT) cylinder and a matrix cylinder, as the representative volume element (RVE). The interfacial stress analysis is performed using the shear lag model for the axisymmetric RVE. Analytical solutions for the normal stresses in the SWCNT and matrix, and the interfacial shear stress across the SWCNT/matrix interface are obtained. The proposed model has a great ability to theoretical prediction of the stress transfer between the matrix and CNTs.

Findings

In order to demonstrate the simulation capabilities of the proposed model, parametric studies are conducted to investigate the effects of the volume fraction of SWCNT and matrix modulus on the stress transfer. The axial stress in the matrix is decreasing with the increase of the volume fraction and decrease of the matrix modulus. As a result of more loads can be transferred to the SWCNT for a large volume fraction and small matrix modulus. These results show that using a large volume fraction and a small matrix modulus improves the efficiency of the stress transfer from the matrix to the CNTs.

Originality/value

A simple but accurate model using a simplified 2D RVE for characterizing the stress transfer in CNT-reinforced nanocomposites is presented. The predictions from the current method compare favourably with those by existing experimental, analytical and computational studies. The simple and explicit expressions of the interfacial stresses provide valuable analysis tools accessible to practical users.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 December 2018

Youssouf Belabed, Bachir Kerboua and Mostapha Tarfaoui

The sustainability of the structures is not only a technical goal, but also a matter of social and environmental values. This requires the researchers to use very rigid, highly…

133

Abstract

Purpose

The sustainability of the structures is not only a technical goal, but also a matter of social and environmental values. This requires the researchers to use very rigid, highly durable and corrosion-resistant composite structures in order to achieve the technical, environmental and social goals. The purpose of this paper is to present an original work on reducing the interfacial stresses of bonded structures with fibre-reinforced polymers (FRP) plates based on new taper design.

Design/methodology/approach

In this proposed concept, the effect of combined taper is investigated on reducing interfacial stresses, attempting to enhance the structure performance and address the debonding problem that comes with reinforcing techniques. This research is carried out by using finite element analysis, incorporating many new parameters.

Findings

As a result, a new solution is discovered that combined taper in both adhesive layer and composite laminate, which significantly reduces the interfacial stresses at the end of the FRP plate. Additionally, a parametric study is carried out in order to determine the optimal configurations of taper dimensions as well as other parameters that influence the stress concentration distribution at the edge of the adherends.

Practical implications

This new design regarding the reduction of interfacial stresses will help in increasing the lifespan of damaged structures reinforced by FRP composites, preserving thus its technical, historical and social values.

Originality/value

The paper uses straight, concave and convex fillets with inverse taper as a new design solution with new parameters including thermo-mechanical loads and pre-stressed FRP plate with multi-layer, fibre orientation and shear-lag effects.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 January 2007

M. Ait Ameur Meziane, S. Benyoucef, A. Tounsi and E.A. Adda Bedia

Fibre‐reinforced plastic (FRP) materials have been recognised as new innovative materials for concrete rehabilitation and retrofit. Since concrete is poor in tension, a beam…

Abstract

Fibre‐reinforced plastic (FRP) materials have been recognised as new innovative materials for concrete rehabilitation and retrofit. Since concrete is poor in tension, a beam without any form of reinforcement will fail when subjected to a relatively small tensile load. Therefore, the bonding of FRP plate to reinforced concrete (RC) structure is an effective solution to increase its overall strength. In such plated beams, tensile forces develop in the bonded plate and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, the debonding of FRP plates bonded to reinforced concrete beams is believed to be initiated by the stress concentration in the adhesive layer. Accurate predictions of the interfacial stresses are prerequisite for designing against debonding failures. In the present analysis, a simple theoretical model to estimate shear and normal stresses is proposed, including the variation in FRP plate fibre orientation. The solution shows significant shear and normal stresses concentration at the plates end. A parametrical study is carried out to show the effects of some design variables, e.g., thickness of adhesive layer and FRP plate, and the distance from support to cut ‐ off end of bonded plates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 June 2019

Alpesh H. Makwana and A.A. Shaikh

The maintenance of aircraft structure with lower cost is one of the prime concerns to regulatory authorities. The carbon fiber-reinforced polymer (CFRP) patches are widely used to…

134

Abstract

Purpose

The maintenance of aircraft structure with lower cost is one of the prime concerns to regulatory authorities. The carbon fiber-reinforced polymer (CFRP) patches are widely used to repair the cracked structure. The demands and application of CFRP compel its price to increase in the near future. A distinct perspective of repairing the cracked aluminum panel with the hybrid composite patch is presented in this paper. The purpose of this paper is to propose an alternative patch material in the form of a hybrid composite patch which can provide economical repair solution.

Design/methodology/approach

The patch hybridization is performed by preparing the hybrid composite from tows of carbon fiber and glass fiber. Rule of hybrid mixture and modified Halpin–Tsai’s equation are used to evaluate the elastic constant. The stress intensity factor and interfacial stresses are determined using finite element analysis. The debonding initiation load is evaluated after testing under mode-I loading condition.

Findings

The hybrid composite patch has rendered the adequate performance for reduction of stress intensity in the cracked panel and control of interfacial stresses in the adhesive layer. The repair efficiency and repair durability of the composite patch repair was ensured by incorporation of the hybrid composite patch.

Originality/value

The studies involving patch hybridization for the application of composite patch repair are presently lacking. The influence of the patch stiffness, methodology to prepare the hybrid composite patch and effects of hybridization on the performance of composite patch repair is presented in this paper.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2605

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2020

Alpesh H. Makwana and A.A. Shaikh

In this article, a novel hybrid composite patch consisting of unidirectional carbon fiber and glass fiber is considered for repair of the aircraft structure. The purpose of this…

Abstract

Purpose

In this article, a novel hybrid composite patch consisting of unidirectional carbon fiber and glass fiber is considered for repair of the aircraft structure. The purpose of this paper is to assess the performance of hybrid composite patch repair of cracked structure and propose an optimized solution to a designer for selection of the appropriate level of a parameter to ensure effective repair solution.

Design/methodology/approach

Elastic properties of the hybrid composites are estimated by micromechanical modeling. Performance of hybrid composite patch repair is evaluated by numerical analysis of stress intensity factor (SIF), shear stress, and peel stress. Design of experiment is used to determine responses for a different combination of design parameters. The second-order mathematical model is suggested for SIF and peel stress. Adequacy of the model is checked by ANOVA and used as a fitness function. Multiobjective optimization is carried out with a genetic algorithm to arrive at the optimal solution.

Findings

The hybrid composite patch has maintained equilibrium between the SIF reduction and rise of the peel stress. The repair efficiency and repair durability can be ensured by selection of an optimum value of volume fraction of glass fiber, applied stress, and adhesive thickness.

Originality/value

The composite patch with varying stiffness is realized by hybridization with different volume fraction of fibers. Analysis and identification of optimum parameter to reduce the SIF and peel stress for hybrid composite patch repair are presented in this article.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 August 2016

Sunil Bhat and S. Narayanan

Since failure of laminated composites by delaminations is common, the purpose of this paper is to present a numerical procedure to check the stability of delaminations in fiber…

Abstract

Purpose

Since failure of laminated composites by delaminations is common, the purpose of this paper is to present a numerical procedure to check the stability of delaminations in fiber metal laminate (Glare), with different possible damage configurations, under uni-axial tension. Deformation behavior of the laminate is also examined. Influence of the type and the extent of damage, represented by varying sizes and number of delaminations, on delamination driving force and laminate deformation is found.

Design/methodology/approach

Delaminated Glare is modeled by finite element method. Interface cohesive elements are used to model the delaminations. Finite element results provide the deflection/deformation characteristics of the laminate. Driving forces of delaminations are estimated by J integrals that are numerically obtained over cyclic paths near delamination tips. Laminates with different types of delaminations are also fabricated and externally delaminated for measurement of their interlaminar fracture toughness. The delamination is considered to be stable if its driving force is less than corresponding interlaminar fracture toughness of the laminate.

Findings

Delaminations are found to be stable in laminates with lower number of delaminations and unstable in laminates with higher number of delaminations. Increase in size of delaminations increases the deformations but reduces the delamination driving force whereas increase in number of delaminations increases both deformations and driving forces. The trends change in case of laminates with symmetrical damage. Shape of delamination is also found to influence the deformations and driving forces. The finite element model is validated.

Research limitations/implications

There is scope for validating the numerical results reported in the paper by theoretical models.

Practical implications

Checking the stability of delaminations and their effect on deformation behavior of the laminate helps is assessment of safety and remaining life of the laminate. If failure is predicted, preemptive action is taken by using repair patch ups at identified critical locations in order to avoid failures in service conditions.

Originality/value

The paper offers the following benefits: use of cohesive zone method that is readily possible in finite element procedures and is relatively simple, fast and reasonably accurate is demonstrated; suitability of using J integrals over paths crossing non-homogeneous and property mismatched material layers is tested; and influence of the type and the extent of damage in the laminate on its deformation behavior and delamination driving forces is found. This type of work has not been reported so far.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000