Search results

1 – 10 of over 11000
Article
Publication date: 30 April 2021

Tushar Jain

The overall goal of this research is to develop algorithms for feature-based recognition of 2D parts from intensity images. Most present industrial vision systems are…

Abstract

Purpose

The overall goal of this research is to develop algorithms for feature-based recognition of 2D parts from intensity images. Most present industrial vision systems are custom-designed systems, which can only handle a specific application. This is not surprising, since different applications have different geometry, different reflectance properties of the parts.

Design/methodology/approach

Computer vision recognition has attracted the attention of researchers in many application areas and has been used to solve many ranges of problems. Object recognition is a type of pattern recognition. Object recognition is widely used in the manufacturing industry for the purpose of inspection. Machine vision techniques are being applied in areas ranging from medical imaging to remote sensing, industrial inspection to document processing and nanotechnology to multimedia databases. In this work, recognition of objects manufactured in mechanical industry is considered. Mechanically manufactured parts have recognition difficulties due to manufacturing process including machine malfunctioning, tool wear and variations in raw material. This paper considers the problem of recognizing and classifying the objects of such mechanical part. Red, green and blue RGB images of five objects are used as an input. The Fourier descriptor technique is used for recognition of objects. Artificial neural network (ANN) is used for classification of five different objects. These objects are kept in different orientations for invariant rotation, translation and scaling. The feed forward neural network with back-propagation learning algorithm is used to train the network. This paper shows the effect of different network architecture and numbers of hidden nodes on the classification accuracy of objects as well as the effect of learning rate and momentum.

Findings

One important finding is that there is not any considerable change in the network performances after 500 iterations. It has been found that for data smaller network structure, smaller learning rate and momentum are required. The relative sample size also has a considerable effect on the performance of the classifier. Further studies suggest that classification accuracy is achieved with the confusion matrix of the data used. Hence, with these results the proposed system can be used efficiently for more objects. Depending upon the manufacturing product and process used, the dimension verification and surface roughness may be integrated with proposed technique to develop a comprehensive vision system. The proposed technique is also highly suitable for web inspections, which do not require dimension and roughness measurement and where desired accuracy is to be achieved at a given speed. In general, most recognition problems provide identity of object with pose estimation. Therefore, the proposed recognition (pose estimation) approach may be integrated with inspection stage.

Originality/value

This paper considers the problem of recognizing and classifying the objects of such mechanical part. RGB images of five objects are used as an input. The Fourier descriptor technique is used for recognition of objects. ANN is used for classification of five different objects. These objects are kept in different orientations for invariant rotation, translation and scaling. The feed forward neural network with back-propagation learning algorithm is used to train the network. This paper shows the effect of different network architecture and numbers of hidden nodes on the classification accuracy of objects as well as the effect of learning rate and momentum.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 12 November 2019

John Oyekan, Axel Fischer, Windo Hutabarat, Christopher Turner and Ashutosh Tiwari

The purpose of this paper is to explore the role that computer vision can play within new industrial paradigms such as Industry 4.0 and in particular to support production line…

Abstract

Purpose

The purpose of this paper is to explore the role that computer vision can play within new industrial paradigms such as Industry 4.0 and in particular to support production line improvements to achieve flexible manufacturing. As Industry 4.0 requires “big data”, it is accepted that computer vision could be one of the tools for its capture and efficient analysis. RGB-D data gathered from real-time machine vision systems such as Kinect ® can be processed using computer vision techniques.

Design/methodology/approach

This research exploits RGB-D cameras such as Kinect® to investigate the feasibility of using computer vision techniques to track the progress of a manual assembly task on a production line. Several techniques to track the progress of a manual assembly task are presented. The use of CAD model files to track the manufacturing tasks is also outlined.

Findings

This research has found that RGB-D cameras can be suitable for object recognition within an industrial environment if a number of constraints are considered or different devices/techniques combined. Furthermore, through the use of a HMM inspired state-based workflow, the algorithm presented in this paper is computationally tractable.

Originality/value

Processing of data from robust and cheap real-time machine vision systems could bring increased understanding of production line features. In addition, new techniques that enable the progress tracking of manual assembly sequences may be defined through the further analysis of such visual data. The approaches explored within this paper make a contribution to the utilisation of visual information “big data” sets for more efficient and automated production.

Details

Assembly Automation, vol. 40 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 January 1978

The Equal Pay Act 1970 (which came into operation on 29 December 1975) provides for an “equality clause” to be written into all contracts of employment. S.1(2) (a) of the 1970 Act…

1379

Abstract

The Equal Pay Act 1970 (which came into operation on 29 December 1975) provides for an “equality clause” to be written into all contracts of employment. S.1(2) (a) of the 1970 Act (which has been amended by the Sex Discrimination Act 1975) provides:

Details

Managerial Law, vol. 21 no. 1
Type: Research Article
ISSN: 0309-0558

Article
Publication date: 1 January 1979

In order to succeed in an action under the Equal Pay Act 1970, should the woman and the man be employed by the same employer on like work at the same time or would the woman still…

Abstract

In order to succeed in an action under the Equal Pay Act 1970, should the woman and the man be employed by the same employer on like work at the same time or would the woman still be covered by the Act if she were employed on like work in succession to the man? This is the question which had to be solved in Macarthys Ltd v. Smith. Unfortunately it was not. Their Lordships interpreted the relevant section in different ways and since Article 119 of the Treaty of Rome was also subject to different interpretations, the case has been referred to the European Court of Justice.

Details

Managerial Law, vol. 22 no. 1
Type: Research Article
ISSN: 0309-0558

Article
Publication date: 5 August 2014

Hairong Jiang, Juan P. Wachs and Bradley S. Duerstock

The purpose of this paper is to develop an integrated, computer vision-based system to operate a commercial wheelchair-mounted robotic manipulator (WMRM). In addition, a gesture…

Abstract

Purpose

The purpose of this paper is to develop an integrated, computer vision-based system to operate a commercial wheelchair-mounted robotic manipulator (WMRM). In addition, a gesture recognition interface system was developed specially for individuals with upper-level spinal cord injuries including object tracking and face recognition to function as an efficient, hands-free WMRM controller.

Design/methodology/approach

Two Kinect® cameras were used synergistically to perform a variety of simple object retrieval tasks. One camera was used to interpret the hand gestures and locate the operator's face for object positioning, and then send those as commands to control the WMRM. The other sensor was used to automatically recognize different daily living objects selected by the subjects. An object recognition module employing the Speeded Up Robust Features algorithm was implemented and recognition results were sent as a commands for “coarse positioning” of the robotic arm near the selected object. Automatic face detection was provided as a shortcut enabling the positing of the objects close by the subject's face.

Findings

The gesture recognition interface incorporated hand detection, tracking and recognition algorithms, and yielded a recognition accuracy of 97.5 percent for an eight-gesture lexicon. Tasks’ completion time were conducted to compare manual (gestures only) and semi-manual (gestures, automatic face detection, and object recognition) WMRM control modes. The use of automatic face and object detection significantly reduced the completion times for retrieving a variety of daily living objects.

Originality/value

Integration of three computer vision modules were used to construct an effective and hand-free interface for individuals with upper-limb mobility impairments to control a WMRM.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 September 2005

Mario Peña‐Cabrera, Ismael Lopez‐Juarez, Reyes Rios‐Cabrera and Jorge Corona‐Castuera

Outcome with a novel methodology for online recognition and classification of pieces in robotic assembly tasks and its application into an intelligent manufacturing cell.

1794

Abstract

Purpose

Outcome with a novel methodology for online recognition and classification of pieces in robotic assembly tasks and its application into an intelligent manufacturing cell.

Design/methodology/approach

The performance of industrial robots working in unstructured environments can be improved using visual perception and learning techniques. The object recognition is accomplished using an artificial neural network (ANN) architecture which receives a descriptive vector called CFD&POSE as the input. Experimental results were done within a manufacturing cell and assembly parts.

Findings

Find this vector represents an innovative methodology for classification and identification of pieces in robotic tasks, obtaining fast recognition and pose estimation information in real time. The vector compresses 3D object data from assembly parts and it is invariant to scale, rotation and orientation, and it also supports a wide range of illumination levels.

Research limitations/implications

Provides vision guidance in assembly tasks, current work addresses the use of ANN's for assembly and object recognition separately, future work is oriented to use the same neural controller for all different sensorial modes.

Practical implications

Intelligent manufacturing cells developed with multimodal sensor capabilities, might use this methodology for future industrial applications including robotics fixtureless assembly. The approach in combination with the fast learning capability of ART networks indicates the suitability for industrial robot applications as it is demonstrated through experimental results.

Originality/value

This paper introduces a novel method which uses collections of 2D images to obtain a very fast feature data – ”current frame descriptor vector” – of an object by using image projections and canonical forms geometry grouping for invariant object recognition.

Details

Assembly Automation, vol. 25 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 June 2005

Ajmal Saeed Mian, Mohammed Bennamoun and Robyn Owens

In model‐based recognition the 3D models of objects are stored in a model library during an offline phase. During the online recognition phase, a view of the scene is matched with…

1037

Abstract

Purpose

In model‐based recognition the 3D models of objects are stored in a model library during an offline phase. During the online recognition phase, a view of the scene is matched with the model library to identify the location and pose of certain library objects in the scene. Aims to focus on the process of 3D modeling and model‐based recognition.

Design/methodology/approach

This paper discusses the process of 3D modeling and model‐based recognition along with their potential applications in industry with a particular emphasis on robot grasp analysis. The paper also emphasises the main challenges in these areas and give a brief literature review.

Findings

In order to develop an automatic 3D model‐based object recognition system it is necessary to automate the process of 3D modeling and recognition. The challenge in automating the 3D modeling process is to develop an automatic correspondence technique. The core of recognition is the representation scheme. Recognition is an online process. Therefore, representation and matching must be very fast in order to facilitate real time recognition.

Practical implications

There are numerous applications of 3D modeling in a variety of areas ranging from the entertainment industry to industrial automation. Some of its applications include computer graphics, virtual reality, medical imaging, reverse engineering, and 3D terrain construction.

Originality/value

Provides information on 3D modeling which constitutes an important part of computer vision or robot vision.

Details

Sensor Review, vol. 25 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 1975

Knight's Industrial Law Reports goes into a new style and format as Managerial Law This issue of KILR is restyled Managerial Law and it now appears on a continuous updating basis…

Abstract

Knight's Industrial Law Reports goes into a new style and format as Managerial Law This issue of KILR is restyled Managerial Law and it now appears on a continuous updating basis rather than as a monthly routine affair.

Details

Managerial Law, vol. 18 no. 1
Type: Research Article
ISSN: 0309-0558

Article
Publication date: 8 October 2018

Tushar Jain, Meenu Gupta and H.K. Sardana

The field of machine vision, or computer vision, has been growing at fast pace. The growth in this field, unlike most established fields, has been both in breadth and depth of…

Abstract

Purpose

The field of machine vision, or computer vision, has been growing at fast pace. The growth in this field, unlike most established fields, has been both in breadth and depth of concepts and techniques. Machine vision techniques are being applied in areas ranging from medical imaging to remote sensing, industrial inspection to document processing and nanotechnology to multimedia databases. The goal of a machine vision system is to create a model of the real world from images. Computer vision recognition has attracted the attention of researchers in many application areas and has been used to solve many ranges of problems. The purpose of this paper is to consider recognition of objects manufactured in mechanical industry. Mechanically manufactured parts have recognition difficulties due to manufacturing process including machine malfunctioning, tool wear and variations in raw material. This paper considers the problem of recognizing and classifying the objects of such parts. RGB images of five objects are used as an input. The Fourier descriptor technique is used for recognition of objects. Artificial neural network (ANN) is used for classification of five different objects. These objects are kept in different orientations for invariant rotation, translation and scaling. The feed forward neural network with back-propagation learning algorithm is used to train the network. This paper shows the effect of different network architecture and numbers of hidden nodes on the classification accuracy of objects.

Design/methodology/approach

The overall goal of this research is to develop algorithms for feature-based recognition of 2D parts from intensity images. Most present industrial vision systems are custom-designed systems, which can only handle a specific application. This is not surprising, since different applications have different geometry, different reflectance properties of the parts.

Findings

Classification accuracy is affected by the changing network architecture. ANN is computationally demanding and slow. A total of 20 hidden nodes network structure produced the best results at 500 iterations (90 percent accuracy based on overall accuracy and 87.50 percent based on κ coefficient). So, 20 hidden nodes are selected for further analysis. The learning rate is set to 0.1, and momentum term used is 0.2 that give the best results architectures. The confusion matrix also shows the accuracy of the classifier. Hence, with these results the proposed system can be used efficiently for more objects.

Originality/value

After calculating the variation of overall accuracy with different network architectures, the results of different configuration of the sample size of 50 testing images are taken. Table II shows the results of the confusion matrix obtained on these testing samples of objects.

Details

International Journal of Intelligent Unmanned Systems, vol. 6 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 23 January 2024

Guoyang Wan, Yaocong Hu, Bingyou Liu, Shoujun Bai, Kaisheng Xing and Xiuwen Tao

Presently, 6 Degree of Freedom (6DOF) visual pose measurement methods enjoy popularity in the industrial sector. However, challenges persist in accurately measuring the visual…

Abstract

Purpose

Presently, 6 Degree of Freedom (6DOF) visual pose measurement methods enjoy popularity in the industrial sector. However, challenges persist in accurately measuring the visual pose of blank and rough metal casts. Therefore, this paper introduces a 6DOF pose measurement method utilizing stereo vision, and aims to the 6DOF pose measurement of blank and rough metal casts.

Design/methodology/approach

This paper studies the 6DOF pose measurement of metal casts from three aspects: sample enhancement of industrial objects, optimization of detector and attention mechanism. Virtual reality technology is used for sample enhancement of metal casts, which solves the problem of large-scale sample sampling in industrial application. The method also includes a novel deep learning detector that uses multiple key points on the object surface as regression objects to detect industrial objects with rotation characteristics. By introducing a mixed paths attention module, the detection accuracy of the detector and the convergence speed of the training are improved.

Findings

The experimental results show that the proposed method has a better detection effect for metal casts with smaller size scaling and rotation characteristics.

Originality/value

A method for 6DOF pose measurement of industrial objects is proposed, which realizes the pose measurement and grasping of metal blanks and rough machined casts by industrial robots.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 11000