Search results

1 – 10 of over 2000
Article
Publication date: 30 April 2021

Tushar Jain

The overall goal of this research is to develop algorithms for feature-based recognition of 2D parts from intensity images. Most present industrial vision systems are…

Abstract

Purpose

The overall goal of this research is to develop algorithms for feature-based recognition of 2D parts from intensity images. Most present industrial vision systems are custom-designed systems, which can only handle a specific application. This is not surprising, since different applications have different geometry, different reflectance properties of the parts.

Design/methodology/approach

Computer vision recognition has attracted the attention of researchers in many application areas and has been used to solve many ranges of problems. Object recognition is a type of pattern recognition. Object recognition is widely used in the manufacturing industry for the purpose of inspection. Machine vision techniques are being applied in areas ranging from medical imaging to remote sensing, industrial inspection to document processing and nanotechnology to multimedia databases. In this work, recognition of objects manufactured in mechanical industry is considered. Mechanically manufactured parts have recognition difficulties due to manufacturing process including machine malfunctioning, tool wear and variations in raw material. This paper considers the problem of recognizing and classifying the objects of such mechanical part. Red, green and blue RGB images of five objects are used as an input. The Fourier descriptor technique is used for recognition of objects. Artificial neural network (ANN) is used for classification of five different objects. These objects are kept in different orientations for invariant rotation, translation and scaling. The feed forward neural network with back-propagation learning algorithm is used to train the network. This paper shows the effect of different network architecture and numbers of hidden nodes on the classification accuracy of objects as well as the effect of learning rate and momentum.

Findings

One important finding is that there is not any considerable change in the network performances after 500 iterations. It has been found that for data smaller network structure, smaller learning rate and momentum are required. The relative sample size also has a considerable effect on the performance of the classifier. Further studies suggest that classification accuracy is achieved with the confusion matrix of the data used. Hence, with these results the proposed system can be used efficiently for more objects. Depending upon the manufacturing product and process used, the dimension verification and surface roughness may be integrated with proposed technique to develop a comprehensive vision system. The proposed technique is also highly suitable for web inspections, which do not require dimension and roughness measurement and where desired accuracy is to be achieved at a given speed. In general, most recognition problems provide identity of object with pose estimation. Therefore, the proposed recognition (pose estimation) approach may be integrated with inspection stage.

Originality/value

This paper considers the problem of recognizing and classifying the objects of such mechanical part. RGB images of five objects are used as an input. The Fourier descriptor technique is used for recognition of objects. ANN is used for classification of five different objects. These objects are kept in different orientations for invariant rotation, translation and scaling. The feed forward neural network with back-propagation learning algorithm is used to train the network. This paper shows the effect of different network architecture and numbers of hidden nodes on the classification accuracy of objects as well as the effect of learning rate and momentum.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 April 1994

Edward T. Lee

Using lattices, presents Boolean Algebra, which is usually introduced using its postulate‐oriented approach. Relationships among sets, relations, lattices and Boolean algebra are…

155

Abstract

Using lattices, presents Boolean Algebra, which is usually introduced using its postulate‐oriented approach. Relationships among sets, relations, lattices and Boolean algebra are shown to form a distributive but not complemented lattice. Provides examples together with corresponding Hasse diagrams. References useful application areas.

Details

Kybernetes, vol. 23 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Content available
Article
Publication date: 1 March 2000

214

Abstract

Details

Kybernetes, vol. 29 no. 2
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 6 May 2020

Rajeshwari S. Patil and Nagashettappa Biradar

Breast cancer is one of the most common malignant tumors in women, which badly have an effect on women's physical and psychological health and even danger to life. Nowadays…

Abstract

Purpose

Breast cancer is one of the most common malignant tumors in women, which badly have an effect on women's physical and psychological health and even danger to life. Nowadays, mammography is considered as a fundamental criterion for medical practitioners to recognize breast cancer. Though, due to the intricate formation of mammogram images, it is reasonably hard for practitioners to spot breast cancer features.

Design/methodology/approach

Breast cancer is one of the most common malignant tumors in women, which badly have an effect on women's physical and psychological health and even danger to life. Nowadays, mammography is considered as a fundamental criterion for medical practitioners to recognize breast cancer. Though, due to the intricate formation of mammogram images, it is reasonably hard for practitioners to spot breast cancer features.

Findings

The performance analysis was done for both segmentation and classification. From the analysis, the accuracy of the proposed IAP-CSA-based fuzzy was 41.9% improved than the fuzzy classifier, 2.80% improved than PSO, WOA, and CSA, and 2.32% improved than GWO-based fuzzy classifiers. Additionally, the accuracy of the developed IAP-CSA-fuzzy was 9.54% better than NN, 35.8% better than SVM, and 41.9% better than the existing fuzzy classifier. Hence, it is concluded that the implemented breast cancer detection model was efficient in determining the normal, benign and malignant images.

Originality/value

This paper adopts the latest Improved Awareness Probability-based Crow Search Algorithm (IAP-CSA)-based Region growing and fuzzy classifier for enhancing the breast cancer detection of mammogram images, and this is the first work that utilizes this method.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 25 January 2018

Hima Bindu and Manjunathachari K.

This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial…

Abstract

Purpose

This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial recognition (FR) systems play a vital part in several applications such as surveillance, access control and image understanding. Accordingly, various face recognition methods have been developed in the literature, but the applicability of these algorithms is restricted because of unsatisfied accuracy. So, the improvement of face recognition is significantly important for the current trend.

Design/methodology/approach

This paper proposes a face recognition system through feature extraction and classification. The proposed model extracts the local and the global feature of the image. The local features of the image are extracted using the kernel based scale invariant feature transform (K-SIFT) model and the global features are extracted using the proposed m-Co-HOG model. (Co-HOG: co-occurrence histograms of oriented gradients) The proposed m-Co-HOG model has the properties of the Co-HOG algorithm. The feature vector database contains combined local and the global feature vectors derived using the K-SIFT model and the proposed m-Co-HOG algorithm. This paper proposes a probabilistic neuro-fuzzy classifier system for the finding the identity of the person from the extracted feature vector database.

Findings

The face images required for the simulation of the proposed work are taken from the CVL database. The simulation considers a total of 114 persons form the CVL database. From the results, it is evident that the proposed model has outperformed the existing models with an improved accuracy of 0.98. The false acceptance rate (FAR) and false rejection rate (FRR) values of the proposed model have a low value of 0.01.

Originality/value

This paper proposes a face recognition system with proposed m-Co-HOG vector and the hybrid neuro-fuzzy classifier. Feature extraction was based on the proposed m-Co-HOG vector for extracting the global features and the existing K-SIFT model for extracting the local features from the face images. The proposed m-Co-HOG vector utilizes the existing Co-HOG model for feature extraction, along with a new color gradient decomposition method. The major advantage of the proposed m-Co-HOG vector is that it utilizes the color features of the image along with other features during the histogram operation.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 March 2009

Manuel Ferreira, Cristina Santos and Joao Monteiro

The purpose of this paper is to propose a set of techniques, in the domain of texture analysis, dedicated to the classification of industrial textures. One of the main purposes…

Abstract

Purpose

The purpose of this paper is to propose a set of techniques, in the domain of texture analysis, dedicated to the classification of industrial textures. One of the main purposes was to deal with a high diversity of textures, including structural and highly random patterns.

Design/methodology/approach

The global system includes a texture segmentation phase and a classification phase. The approach for image texture segmentation is based on features extracted from wavelets transform, fuzzy spectrum and interaction maps. The classification architecture uses a fuzzy grammar inference system.

Findings

The classifier uses the aggregation of features from the several segmentation techniques, resulting in high flexibility concerning the diversity of industrial textures. The resulted system allows on‐line learning of new textures. This approach avoids the need for a global re‐learning of the all textures each time a new texture is presented to the system.

Practical implications

These achievements demonstrate the practical value of the system, as it can be applied to different industrial sectors for quality control operations.

Originality/value

The global approach was integrated in a cork vision system, leading to an industrial prototype that has already been tested. Similarly, it was tested in a textile machine, for a specific fabric inspection, and gave results that corroborate the diversity of possible applications. The segmentation procedure reveals good performance that is indicated by high classification rates, revealing good perspectives for full industrialization.

Details

Sensor Review, vol. 29 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 29 July 2020

T. Mahalingam and M. Subramoniam

Surveillance is the emerging concept in the current technology, as it plays a vital role in monitoring keen activities at the nooks and corner of the world. Among which moving…

2120

Abstract

Surveillance is the emerging concept in the current technology, as it plays a vital role in monitoring keen activities at the nooks and corner of the world. Among which moving object identifying and tracking by means of computer vision techniques is the major part in surveillance. If we consider moving object detection in video analysis is the initial step among the various computer applications. The main drawbacks of the existing object tracking method is a time-consuming approach if the video contains a high volume of information. There arise certain issues in choosing the optimum tracking technique for this huge volume of data. Further, the situation becomes worse when the tracked object varies orientation over time and also it is difficult to predict multiple objects at the same time. In order to overcome these issues here, we have intended to propose an effective method for object detection and movement tracking. In this paper, we proposed robust video object detection and tracking technique. The proposed technique is divided into three phases namely detection phase, tracking phase and evaluation phase in which detection phase contains Foreground segmentation and Noise reduction. Mixture of Adaptive Gaussian (MoAG) model is proposed to achieve the efficient foreground segmentation. In addition to it the fuzzy morphological filter model is implemented for removing the noise present in the foreground segmented frames. Moving object tracking is achieved by the blob detection which comes under tracking phase. Finally, the evaluation phase has feature extraction and classification. Texture based and quality based features are extracted from the processed frames which is given for classification. For classification we are using J48 ie, decision tree based classifier. The performance of the proposed technique is analyzed with existing techniques k-NN and MLP in terms of precision, recall, f-measure and ROC.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 21 June 2022

Abhishek Das and Mihir Narayan Mohanty

In time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent…

Abstract

Purpose

In time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent incidence among all the cancers whereas breast cancer takes fifth place in the case of mortality numbers. Out of many image processing techniques, certain works have focused on convolutional neural networks (CNNs) for processing these images. However, deep learning models are to be explored well.

Design/methodology/approach

In this work, multivariate statistics-based kernel principal component analysis (KPCA) is used for essential features. KPCA is simultaneously helpful for denoising the data. These features are processed through a heterogeneous ensemble model that consists of three base models. The base models comprise recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU). The outcomes of these base learners are fed to fuzzy adaptive resonance theory mapping (ARTMAP) model for decision making as the nodes are added to the F_2ˆa layer if the winning criteria are fulfilled that makes the ARTMAP model more robust.

Findings

The proposed model is verified using breast histopathology image dataset publicly available at Kaggle. The model provides 99.36% training accuracy and 98.72% validation accuracy. The proposed model utilizes data processing in all aspects, i.e. image denoising to reduce the data redundancy, training by ensemble learning to provide higher results than that of single models. The final classification by a fuzzy ARTMAP model that controls the number of nodes depending upon the performance makes robust accurate classification.

Research limitations/implications

Research in the field of medical applications is an ongoing method. More advanced algorithms are being developed for better classification. Still, the scope is there to design the models in terms of better performance, practicability and cost efficiency in the future. Also, the ensemble models may be chosen with different combinations and characteristics. Only signal instead of images may be verified for this proposed model. Experimental analysis shows the improved performance of the proposed model. This method needs to be verified using practical models. Also, the practical implementation will be carried out for its real-time performance and cost efficiency.

Originality/value

The proposed model is utilized for denoising and to reduce the data redundancy so that the feature selection is done using KPCA. Training and classification are performed using heterogeneous ensemble model designed using RNN, LSTM and GRU as base classifiers to provide higher results than that of single models. Use of adaptive fuzzy mapping model makes the final classification accurate. The effectiveness of combining these methods to a single model is analyzed in this work.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 26 July 2019

Ayalapogu Ratna Raju, Suresh Pabboju and Ramisetty Rajeswara Rao

Brain tumor segmentation and classification is the interesting area for differentiating the tumorous and the non-tumorous cells in the brain and classifies the tumorous cells for…

Abstract

Purpose

Brain tumor segmentation and classification is the interesting area for differentiating the tumorous and the non-tumorous cells in the brain and classifies the tumorous cells for identifying its level. The methods developed so far lack the automatic classification, consuming considerable time for the classification. In this work, a novel brain tumor classification approach, namely, harmony cuckoo search-based deep belief network (HCS-DBN) has been proposed. Here, the images present in the database are segmented based on the newly developed hybrid active contour (HAC) segmentation model, which is the integration of the Bayesian fuzzy clustering (BFC) and the active contour model. The proposed HCS-DBN algorithm is trained with the features obtained from the segmented images. Finally, the classifier provides the information about the tumor class in each slice available in the database. Experimentation of the proposed HAC and the HCS-DBN algorithm is done using the MRI image available in the BRATS database, and results are observed. The simulation results prove that the proposed HAC and the HCS-DBN algorithm have an overall better performance with the values of 0.945, 0.9695 and 0.99348 for accuracy, sensitivity and specificity, respectively.

Design/methodology/approach

The proposed HAC segmentation approach integrates the properties of the AC model and BFC. Initially, the brain image with different modalities is subjected to segmentation with the BFC and AC models. Then, the Laplacian correction is applied to fuse the segmented outputs from each model. Finally, the proposed HAC segmentation provides the error-free segments of the brain tumor regions prevailing in the MRI image. The next step is to extract the useful features, based on scattering transform, wavelet transform and local Gabor binary pattern, from the segmented brain image. Finally, the extracted features from each segment are provided to the DBN for the training, and the HCS algorithm chooses the optimal weights for DBN training.

Findings

The experimentation of the proposed HAC with the HCS-DBN algorithm is analyzed with the standard BRATS database, and its performance is evaluated based on metrics such as accuracy, sensitivity and specificity. The simulation results of the proposed HAC with the HCS-DBN algorithm are compared against existing works such as k-NN, NN, multi-SVM and multi-SVNN. The results achieved by the proposed HAC with the HCS-DBN algorithm are eventually higher than the existing works with the values of 0.945, 0.9695 and 0.99348 for accuracy, sensitivity and specificity, respectively.

Originality/value

This work presents the brain tumor segmentation and the classification scheme by introducing the HAC-based segmentation model. The proposed HAC model combines the BFC and the active contour model through a fusion process, using the Laplacian correction probability for segmenting the slices in the database.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 2000