Search results

1 – 10 of 11
Article
Publication date: 1 June 1996

G.K. Despotis and S. Tsangaris

The extrudate swell phenomenon is analysed by solving, simultaneously,the Navier‐Stokes equations along with the continuity equation bymeans of a finite volume method. In this…

Abstract

The extrudate swell phenomenon is analysed by solving, simultaneously, the Navier‐Stokes equations along with the continuity equation by means of a finite volume method. In this work, the planar jet flows of incompressible viscous Newtonian and power‐law fluids for Reynolds numbers as high as 75 are simulated. The method uses the velocity components and pressure as the primitive variables and employs an unstructured triangular grid and triangular or polygonal control volume for each separate variable. The numerical results show good agreement with previously reported experimental and numerical results. Shear thickening results in an increase in swelling ratio, while the introduction of surface tension results in a describes in swelling ratio.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1986

J.R. Clermont and M.E. de la Lande

A new numerical method is presented for the simulation of flows of incompressible fluids in plane or axisymmetric flows. Under certain assumptions, the physical domain can be…

Abstract

A new numerical method is presented for the simulation of flows of incompressible fluids in plane or axisymmetric flows. Under certain assumptions, the physical domain can be transformed into a rectangular domain. This method can involve free surface flow problems. In Newtonian and non‐Newtonian cases, the relevant equations are non‐linear and the solution is carried out in the transformed domain where the stream lines are parallel straight lines.

Details

Engineering Computations, vol. 3 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 June 2002

A. Baloch, H. Matallah, V. Ngamaramvaranggul and M.F. Webster

This article focuses on the comparative study of annular wire‐coating flows with polymer melt materials. Different process designs are considered of pressure‐ and tube‐tooling…

Abstract

This article focuses on the comparative study of annular wire‐coating flows with polymer melt materials. Different process designs are considered of pressure‐ and tube‐tooling, complementing earlier studies on individual designs. A novel mass‐balance free‐surface location technique is proposed. The polymeric materials are represented via shear‐thinning, differential viscoelastic constitutive models, taken of exponential Phan‐Thien/Tanner form. Simulations are conducted for these industrial problems through distributed parallel computation, using a semi‐implicit time‐stepping Taylor‐Galerkin/pressure‐correction algorithm. On typical field results and by comparing short‐against full‐die pressure‐tooling solutions, shear‐rates are observed to increase ten fold, while strain rates increase one hundred times. Tube‐tooling shear and extension‐rates are one quarter of those for pressure‐tooling. These findings across design options, have considerable bearing on the appropriateness of choice for the respective process involved. Parallel finite element results are generated on a homogeneous network of Intel‐chip workstations, running PVM (Parallel Vitual Machine) protocol over a Solaris operating system. Parallel timings yield practically ideal linear speed‐up over the set number of processors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 April 2014

Brian N. Turner, Robert Strong and Scott A. Gold

The purpose of this paper is to systematically and critically review the literature related to process design and modeling of fused deposition modeling (FDM) and similar…

13933

Abstract

Purpose

The purpose of this paper is to systematically and critically review the literature related to process design and modeling of fused deposition modeling (FDM) and similar extrusion-based additive manufacturing (AM) or rapid prototyping processes.

Design/methodology/approach

A systematic review of the literature focusing on process design and mathematical process modeling was carried out.

Findings

FDM and similar processes are among the most widely used rapid prototyping processes with growing application in finished part manufacturing. Key elements of the typical processes, including the material feed mechanism, liquefier and print nozzle; the build surface and environment; and approaches to part finishing are described. Approaches to estimating the motor torque and power required to achieve a desired filament feed rate are presented. Models of required heat flux, shear on the melt and pressure drop in the liquefier are reviewed. On leaving the print nozzle, die swelling and bead cooling are considered. Approaches to modeling the spread of a deposited road of material and the bonding of polymer roads to one another are also reviewed.

Originality/value

To date, no other systematic review of process design and modeling research related to melt extrusion AM has been published. Understanding and improving process models will be key to improving system process controls, as well as enabling the development of advanced engineering material feedstocks for FDM processes.

Details

Rapid Prototyping Journal, vol. 20 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 July 2018

Mohammad Abu Hasan Khondoker, Asad Asad and Dan Sameoto

This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design…

Abstract

Purpose

This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion.

Design/methodology/approach

In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously.

Findings

The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments.

Originality/value

In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 2003

R.E. Khayat and N. Ashrafi

A hybrid spectral/boundary element approach is proposed to examine the influence of Couette channel flow on transient coating of highly elastic fluids. The viscoelastic…

Abstract

A hybrid spectral/boundary element approach is proposed to examine the influence of Couette channel flow on transient coating of highly elastic fluids. The viscoelastic instability of one‐dimensional plane Couette flow is first determined for a large class of Oldroyd fluids with added viscosity, which typically represent polymer solutions composed of a Newtonian solvent and a polymeric solute. The Johnson‐Segalman equation is used as the constitutive model. The velocity profile inside the channel is taken as the exit profile for the emerging free‐surface flow. The flow is assumed to be Newtonian as it emerges from the channel. An estimate of the magnitude of the rate‐of‐strain tensor components in the free‐surface region reveals that they are generally smaller than the shear rate inside the channel. The evolution of the flow front is simulated using the boundary element method. For the channel flow, the problem is reduced to a non‐linear dynamical system using the Galerkin projection method. Stability analysis indicates that the channel velocity may be linear or non‐linear depending on the range of the Weissenberg number. The evolution of the coating flow at the exit is examined for steady as well as transient (monotonic and oscillatory) channel flow. It is found that adverse flow can exist as a result of fluid elasticity, which can hinder the process of blade coating.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1446

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 November 2015

Adel Chine, Amine Ammar and J.R. Clermont

The purpose of this paper is to compute flow effects of the transition from adherence-to-slip in two-dimensional flows, for a polymer melt obeying a memory-integral viscoelastic…

Abstract

Purpose

The purpose of this paper is to compute flow effects of the transition from adherence-to-slip in two-dimensional flows, for a polymer melt obeying a memory-integral viscoelastic equation, in isothermal and non-isothermal cases.

Design/methodology/approach

Temperature dependence is expressed by Arrhenius and William-Landel-Ferry models. A coupling approach is defined. For the dynamic equations, the Stream-Tube Method (STM) is used with finite differences in a mapped rectangular domain of the real domain, where streamlines are parallel and straight. STM avoids particle-tracking problems and allows simple formulae to evaluate stresses resulting from the constitutive equation. For the temperature field, a finite-element method is carried out to solve the energy equation in the real domain.

Findings

The approach avoids numerical problems arising with classical formulations and proves to be robust and efficient. Large elasticity levels are attained without convergence and refinement difficulties that may arise close to the “stick-slip” transition section. The method highlights the role of temperature conditions and reveals interesting differences for the ducts considered.

Practical implications

The results of the study are of interest for polymer processing where slip at the wall can be encountered, in relation with the physical properties of the materials.

Originality/value

The paper presents a simple approach that limits considerably numerical problems coming from stick-slip boundary conditions and avoids particle-tracking. Results are obtained at flow rates encountered in industrial conditions.

Details

Engineering Computations, vol. 32 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2607

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 May 2015

A. Mahdy and A Chamkha

The purpose of this paper is to discuss a combined similarity-numerical approach that is used to study the unsteady two-dimensional flow of a non-Newtonian nanofluid over a…

422

Abstract

Purpose

The purpose of this paper is to discuss a combined similarity-numerical approach that is used to study the unsteady two-dimensional flow of a non-Newtonian nanofluid over a contracting cylinder using Buongiorno’s model and the Casson fluid model that is used to characterize the non-Newtonian fluid behavior.

Design/methodology/approach

Similarity transformations are employed to transform the unsteady Navier-Stokes partial differential equations into a system of ordinary differential equations. The transformed equations are then solved numerically by means of the very robust symbolic computer algebra software MATLAB employing the routine bvpc45.

Findings

The effect of increasing values of the Casson parameter is to suppress the velocity field (in absolute sense), the temperature and concentration decrease as Casson parameter increase. The heat and mass transfer rates decrease with the increase of unsteadiness parameters and Brownian motion parameter. In addition, they increase as the Casson parameter and the thermophoresis parameter increase.

Originality/value

The problem is relatively original and represents a very important contribution to the field of non-Newtonian nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 11