Search results

1 – 10 of over 11000
Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 15 November 2022

Jun Wu, Cheng Huang, Zili Li, Runsheng Li, Guilan Wang and Haiou Zhang

Wire and arc additive manufacturing (WAAM) is a widely used advanced manufacturing technology. If the surface defects occurred during welding process cannot be detected and…

Abstract

Purpose

Wire and arc additive manufacturing (WAAM) is a widely used advanced manufacturing technology. If the surface defects occurred during welding process cannot be detected and repaired in time, it will form the internal defects. To address this problem, this study aims to develop an in situ monitoring system for the welding process with a high-dynamic range imaging (HDR) melt pool camera.

Design/methodology/approach

An improved you only look once version 3 (YOLOv3) model was proposed for online surface defects detection and classification. In this paper, improvements were mainly made in the bounding box clustering algorithm, bounding box loss function, classification loss function and network structure.

Findings

The results showed that the improved model outperforms the Faster regions with convolutional neural network features, single shot multibox detector, RetinaNet and YOLOv3 models with mAP value of 98.0% and a recognition rate of 59 frames per second. And it was indicated that the improved YOLOv3 model satisfied the requirements of real-time monitoring well in both efficiency and accuracy.

Originality/value

Experimental results show that the improved YOLOv3 model can solve the problem of poor performance of traditional defect detection models and other deep learning models. And the proposed model can meet the requirements of WAAM quality monitoring.

Article
Publication date: 18 August 2022

Britto Pari J., Mariammal K. and Vaithiyanathan D.

Filter design plays an essential role in most communication standards. The essential element of the software-defined radio is a channelizer that comprises several channel filters…

Abstract

Purpose

Filter design plays an essential role in most communication standards. The essential element of the software-defined radio is a channelizer that comprises several channel filters. Designing filters with lower complexity, minimized area and enhanced speed is a demanding task in currently prevailing communication standards. This study aims to propose an efficient reconfigurable residue number system (RNS)-based multiply-accumulate (MAC) channel filter for software radio receivers.

Design/methodology/approach

RNS-based pipelined MAC module for the realization of channel finite impulse response (FIR) filter architecture is considered in this work. Further, the use of a single adder and single multiplier for realizing the filter architecture regardless of the number of taps offers effective resource sharing. This design provides significant improvement in speed of operation as well as a reduction in area complexity.

Findings

In this paper, two major tasks have been considered: first, the RNS number conversion is performed in which the integer is converted into several residues. These residues are processed in parallel and are applied to the MAC-FIR filter architecture. Second, the MAC filter architecture involves pipelining, which enhances the speed of operation to a significant extent. Also, the time-sharing-based design incorporates a single partial product-based shift and add multiplier and single adder, which provide a low complex design. The results show that the proposed 16-tap RNS-based pipelined MAC sub-filter achieves significant improvement in speed as well as 89.87% area optimization when examined with the conventional RNS-based FIR filter structure.

Originality/value

The proposed MAC-FIR filter architecture provides good performance in terms of complexity and speed of operation because of the use of the RNS scheme with pipelining and partial product-based shift and adds multiplier and single adder when examining with the conventional designs. The reported architecture can be used in software radios.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 January 2024

Godfred Fobiri, Innocent Musonda and Franco Muleya

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in…

Abstract

Purpose

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in the built environment. This paper aims to review RC applications, potentials, limitations and the extent to which RC can be adopted for cost monitoring of construction projects.

Design/methodology/approach

A mixed-method approach, using Bibliometric analysis and the PRISMA framework, was used to review and analyse 112 peer-reviewed journal articles from the Scopus and Web of Science databases.

Findings

The study reveals RC has been applied in various areas in the built environment, but health and safety, cost and labour productivity monitoring have received little or no attention. It is proposed that RC can significantly support cost monitoring owing to its ability to acquire accurate and quick digital as-built 3D point cloud data, which contains rich measurement points for the valuation of work done.

Research limitations/implications

The study’s conclusions are based only on the Scopus and Web of Science data sets. Only English language documents were approved, whereas others may be in other languages. The research is a non-validation of findings using empirical data to confirm the data obtained from RC literature.

Practical implications

This paper highlights the importance of RC for cost monitoring in construction projects, filling knowledge gaps and enhancing project outcomes.

Social implications

The implementation of RC in the era of the digital revolution has the potential to improve project delivery around the world today. Every project’s success is largely determined by the availability of precise and detailed digital data. RC applications have pushed for more sustainable design, construction and operations in the built environment.

Originality/value

The study has given research trends on the extent of RC applications, potentials, limitations and future directions.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 20 March 2023

Tomoharu Ishikawa, Junki Tsunetou, Yoshiko Yanagida, Mutsumi Yanaka, Minoru Mitsui, Kazuya Sasaki and Miyoshi Ayama

The study aimed to clarify differences in fabric hand perceptions among Japanese and Chinese participants and implement online shopping strategies that enable consumers to easily…

Abstract

Purpose

The study aimed to clarify differences in fabric hand perceptions among Japanese and Chinese participants and implement online shopping strategies that enable consumers to easily recognize fabric texture.

Design/methodology/approach

Forty (20 Japanese and 20 Chinese) participants knowledgeable about clothing and fabric were recruited. Participants evaluated fabric by sight and touch in a visuotactile experiment (VTE). The stimulus material comprised 39 fabric samples representing a broad range of fabric attributes (7 fibers, 5 weaving/knitting techniques and 3 yarn thicknesses and density). A Mann–Whitney U test and a factor analysis were conducted to determine differences in responses for the different fabric variables.

Findings

The fabric hand perceptions factors were similar between both groups. Japanese participants showed a stronger preference for fabrics that felt wet. Japanese participants’ fabric hand perceptions had a 3-factor structure, while Chinese participants had a 2-factor structure. Chinese participants regarded “crisp” as perceptually and linguistically equivalent to “stretchy.”

Originality/value

The study’s findings suggest that Chinese people have stronger preferences in fabrics than Japanese people do. Japanese people evaluate fabric hand in a more nuanced manner than Chinese individuals, including discerning different fabric attributes, such as fiber and yarn thickness and density. Thus, nationality may influence fabric hand perceptions more than fabric knowledge does. Specifically, in evaluating “crispness,” the results required further analysis because differences in nationality may have affected evaluations regarding perception and linguistic perspectives. The findings provide design guidelines for implementing online shopping strategies adapted to each participant group.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 July 2022

Uzair Khan, Hikmat Ullah Khan, Saqib Iqbal and Hamza Munir

Image Processing is an emerging field that is used to extract information from images. In recent years, this field has received immense attention from researchers, especially in…

Abstract

Purpose

Image Processing is an emerging field that is used to extract information from images. In recent years, this field has received immense attention from researchers, especially in the research domains of object detection, Biomedical Imaging and Semantic segmentation. In this study, a bibliometric analysis of publications related to image processing in the Science Expanded Index Extended (SCI-Expanded) has been performed. Several parameters have been analyzed such as annual scientific production, citations per article, most cited documents, top 20 articles, most relevant authors, authors evaluation using y-index, top and most relevant sources (journals) and hot topics.

Design/methodology/approach

The Bibliographic data has been extracted from the Web of Science which is well known and the world's top database of bibliographic citations of multidisciplinary areas that covers the various journals of computer science, engineering, medical and social sciences.

Findings

The research work in image processing is meager in the past decade, however, from 2014 to 2019, it increases dramatically. Recently, the IEEE Access journal is the most relevant source with an average of 115 publications per year. The USA is most productive and its publications are highly cited while China comes in second place. Image Segmentation, Feature Extraction and Medical Image Processing are hot topics in recent years. The National Natural Science Foundation of China provides 8% of all funds for Image Processing. As Image Processing is now becoming one of the most critical fields, the research productivity has enhanced during the past five years and more work is done while the era of 2005–2013 was the area with the least amount of work in this area.

Originality/value

This research is novel in this regard that no previous research focuses on Bibliometric Analysis in the Image Processing domain, which is one of the hot research areas in computer science and engineering.

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 October 2022

Emmanuel Joy, Aadhithian R. and Christhu Raja

The purpose of this paper is to present the investigation on contemporary applications of game design in architectural visualization, urban environmental planning and the results…

Abstract

Purpose

The purpose of this paper is to present the investigation on contemporary applications of game design in architectural visualization, urban environmental planning and the results to address the problems of traditional methods specifically in terms of interactivity and visualization. The authors present the prototype that incorporates information modeling and virtual reality (VR) into interactive architectural visualization.

Design/methodology/approach

The proposed system supports a virtual walkthrough process that allows users to navigate in an architectural space of their imagination and design. The immersion in the design of living space or environment has been made possible through the inclusion of VR through the use of WebVR technology to deploy the design to be experienced.

Findings

This study investigates and establishes a framework that explores the intricacies of 3 imensional (3D) Architectural Visualization in a real-time engine by designing a visual experience with a better level of user interaction and then deploying it through VR.

Originality/value

To the best of the authors’ knowledge, this is one of the few experimental frameworks which perfectly integrates VR for visualization in digital home design environments. The prospective applications of this framework are in several fields of construction innovation, architectural design, 3D modeling, virtual and augmented reality.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 29 March 2024

Pingyang Zheng, Shaohua Han, Dingqi Xue, Ling Fu and Bifeng Jiang

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM…

Abstract

Purpose

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM) technology has been widely applied for fabricating medium- to large-scale metallic components. The additive manufacturing (AM) method is a relatively complex process, which involves the workpiece modeling, conversion of the model file, slicing, path planning and so on. Then the structure is formed by the accumulated weld bead. However, the poor forming accuracy of WAAM usually leads to severe dimensional deviation between the as-built and the predesigned structures. This paper aims to propose a visual sensing technology and deep learning–assisted WAAM method for fabricating metallic structure, to simplify the complex WAAM process and improve the forming accuracy.

Design/methodology/approach

Instead of slicing of the workpiece modeling and generating all the welding torch paths in advance of the fabricating process, this method is carried out by adding the feature point regression branch into the Yolov5 algorithm, to detect the feature point from the images of the as-built structure. The coordinates of the feature points of each deposition layer can be calculated automatically. Then the welding torch trajectory for the next deposition layer is generated based on the position of feature point.

Findings

The mean average precision score of modified YOLOv5 detector is 99.5%. Two types of overhanging structures have been fabricated by the proposed method. The center contour error between the actual and theoretical is 0.56 and 0.27 mm in width direction, and 0.43 and 0.23 mm in height direction, respectively.

Originality/value

The fabrication of circular overhanging structures without using the complicate slicing strategy, turning table or other extra support verified the possibility of the robotic WAAM system with deep learning technology.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

Understanding Intercultural Interaction: An Analysis of Key Concepts, 2nd Edition
Type: Book
ISBN: 978-1-83753-438-8

1 – 10 of over 11000