Search results

1 – 10 of 19
Article
Publication date: 11 October 2022

Shi Zhou, Jia Zhao, Yi Shan Shi, Yi Fan Wang and Shun Qi Mei

In the fabric manufacturing industry, various unfavorable factors, including machine fault and yarn breakage, can easily cause fabric defects and affect product quality, begetting…

Abstract

Purpose

In the fabric manufacturing industry, various unfavorable factors, including machine fault and yarn breakage, can easily cause fabric defects and affect product quality, begetting huge economic losses to enterprises. Thus, automatic fabric defect detection systems have become an important development direction. Herein, the most common defects in the fabric production process, like ribbon yarn, broken yarn, cotton ball, holes, yarn shedding and stains, are detected. Current fabric defect detection systems afford low detection accuracy and a high missed detection rate for small target fabric defects. Therefore, this study proposes deep learning technology for automatically detecting fabric defects by improving the YOLOv5s target detection algorithm. The improved algorithm is termed YOLOv5s-4SCK, which can effectively detect fabric defects. This study aims to discuss the aforementioned issues.

Design/methodology/approach

Specifically, based on the YOLOv5s algorithm, first, the structure of YOLOv5s is modified to add a small target detection layer, fully utilize deep and shallow features and reduce the missed detection rate of small target fabric defects. Second, the integration of CARAFE upsampling enables the effective retention of feature information and maintenance of a certain computational efficiency, thereby improving the detection accuracy. Finally, the K-Means++ clustering algorithm is used to analyze the position of the center point of the prior box to better obtain the anchor box and improve the average accuracy and evaluation index of detection.

Findings

The research results show that the YOLOv5s-4SCK algorithm increases the accuracy by 4.1% and the detection speed by 2 f.s-1 compared to the original YOLOv5s algorithm, and it effectively improves the original YOLOv5s problem of high missed detection rate of small targets.

Research limitations/implications

The YOLOv5s-4SCK proposed in this paper can effectively reduce the missed detection rate of fabric defects, improve the detection efficiency and has certain industrial value.

Practical implications

The proposed algorithm can quickly identify fabric defects, effectively improving the detection rate. In the future, the proposed algorithm will be applied in the actual industry.

Social implications

Automatic fabric defect detection reduces the manpower of inspectors, and the proposed YOLOv5s-4SCK algorithm is also suitable for other recognition fields.

Originality/value

The proposed YOLOv5s-4SCK algorithm has been tested using real cloth to ensure its accuracy, and its performance is better than the original YOLOv5s algorithm.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 January 2023

Yueting Yang, Shaolin Hu, Ye Ke and Runguan Zhou

Fire smoke detection in petrochemical plant can prevent fire and ensure production safety and life safety. The purpose of this paper is to solve the problem of missed detection…

Abstract

Purpose

Fire smoke detection in petrochemical plant can prevent fire and ensure production safety and life safety. The purpose of this paper is to solve the problem of missed detection and false detection in flame smoke detection under complex factory background.

Design/methodology/approach

This paper presents a flame smoke detection algorithm based on YOLOv5. The target regression loss function (CIoU) is used to improve the missed detection and false detection in target detection and improve the model detection performance. The improved activation function avoids gradient disappearance to maintain high real-time performance of the algorithm. Data enhancement technology is used to enhance the ability of the network to extract features and improve the accuracy of the model for small target detection.

Findings

Based on the actual situation of flame smoke, the loss function and activation function of YOLOv5 model are improved. Based on the improved YOLOv5 model, a flame smoke detection algorithm with generalization performance is established. The improved model is compared with SSD and YOLOv4-tiny. The accuracy of the improved YOLOv5 model can reach 99.5%, which achieves a more accurate detection effect on flame smoke. The improved network model is superior to the existing methods in running time and accuracy.

Originality/value

Aiming at the actual particularity of flame smoke detection, an improved flame smoke detection network model based on YOLOv5 is established. The purpose of optimizing the model is achieved by improving the loss function, and the activation function with stronger nonlinear ability is combined to avoid over-fitting of the network. This method is helpful to improve the problems of missed detection and false detection in flame smoke detection and can be further extended to pedestrian target detection and vehicle running recognition.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 19 March 2024

Cemalettin Akdoğan, Tolga Özer and Yüksel Oğuz

Nowadays, food problems are likely to arise because of the increasing global population and decreasing arable land. Therefore, it is necessary to increase the yield of…

Abstract

Purpose

Nowadays, food problems are likely to arise because of the increasing global population and decreasing arable land. Therefore, it is necessary to increase the yield of agricultural products. Pesticides can be used to improve agricultural land products. This study aims to make the spraying of cherry trees more effective and efficient with the designed artificial intelligence (AI)-based agricultural unmanned aerial vehicle (UAV).

Design/methodology/approach

Two approaches have been adopted for the AI-based detection of cherry trees: In approach 1, YOLOv5, YOLOv7 and YOLOv8 models are trained with 70, 100 and 150 epochs. In Approach 2, a new method is proposed to improve the performance metrics obtained in Approach 1. Gaussian, wavelet transform (WT) and Histogram Equalization (HE) preprocessing techniques were applied to the generated data set in Approach 2. The best-performing models in Approach 1 and Approach 2 were used in the real-time test application with the developed agricultural UAV.

Findings

In Approach 1, the best F1 score was 98% in 100 epochs with the YOLOv5s model. In Approach 2, the best F1 score and mAP values were obtained as 98.6% and 98.9% in 150 epochs, with the YOLOv5m model with an improvement of 0.6% in the F1 score. In real-time tests, the AI-based spraying drone system detected and sprayed cherry trees with an accuracy of 66% in Approach 1 and 77% in Approach 2. It was revealed that the use of pesticides could be reduced by 53% and the energy consumption of the spraying system by 47%.

Originality/value

An original data set was created by designing an agricultural drone to detect and spray cherry trees using AI. YOLOv5, YOLOv7 and YOLOv8 models were used to detect and classify cherry trees. The results of the performance metrics of the models are compared. In Approach 2, a method including HE, Gaussian and WT is proposed, and the performance metrics are improved. The effect of the proposed method in a real-time experimental application is thoroughly analyzed.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 September 2023

Tolga Özer and Ömer Türkmen

This paper aims to design an AI-based drone that can facilitate the complicated and time-intensive control process for detecting healthy and defective solar panels. Today, the use…

Abstract

Purpose

This paper aims to design an AI-based drone that can facilitate the complicated and time-intensive control process for detecting healthy and defective solar panels. Today, the use of solar panels is becoming widespread, and control problems are increasing. Physical control of the solar panels is critical in obtaining electrical power. Controlling solar panel power plants and rooftop panel applications installed in large areas can be difficult and time-consuming. Therefore, this paper designs a system that aims to panel detection.

Design/methodology/approach

This paper designed a low-cost AI-based unmanned aerial vehicle to reduce the difficulty of the control process. Convolutional neural network based AI models were developed to classify solar panels as damaged, dusty and normal. Two approaches to the solar panel detection model were adopted: Approach 1 and Approach 2.

Findings

The training was conducted with YOLOv5, YOLOv6 and YOLOv8 models in Approach 1. The best F1 score was 81% at 150 epochs with YOLOv5m. In total, 87% and 89% of the best F1 score and mAP values were obtained with the YOLOv5s model at 100 epochs in Approach 2 as a proposed method. The best models at Approaches 1 and 2 were used with a developed AI-based drone in the real-time test application.

Originality/value

The AI-based low-cost solar panel detection drone was developed with an original data set of 1,100 images. A detailed comparative analysis of YOLOv5, YOLOv6 and YOLOv8 models regarding performance metrics was realized. Gaussian, salt-pepper noise addition and wavelet transform noise removal preprocessing techniques were applied to the created data set under the proposed method. The proposed method demonstrated expressive and remarkable performance in panel detection applications.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 March 2024

Pingyang Zheng, Shaohua Han, Dingqi Xue, Ling Fu and Bifeng Jiang

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM…

Abstract

Purpose

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM) technology has been widely applied for fabricating medium- to large-scale metallic components. The additive manufacturing (AM) method is a relatively complex process, which involves the workpiece modeling, conversion of the model file, slicing, path planning and so on. Then the structure is formed by the accumulated weld bead. However, the poor forming accuracy of WAAM usually leads to severe dimensional deviation between the as-built and the predesigned structures. This paper aims to propose a visual sensing technology and deep learning–assisted WAAM method for fabricating metallic structure, to simplify the complex WAAM process and improve the forming accuracy.

Design/methodology/approach

Instead of slicing of the workpiece modeling and generating all the welding torch paths in advance of the fabricating process, this method is carried out by adding the feature point regression branch into the Yolov5 algorithm, to detect the feature point from the images of the as-built structure. The coordinates of the feature points of each deposition layer can be calculated automatically. Then the welding torch trajectory for the next deposition layer is generated based on the position of feature point.

Findings

The mean average precision score of modified YOLOv5 detector is 99.5%. Two types of overhanging structures have been fabricated by the proposed method. The center contour error between the actual and theoretical is 0.56 and 0.27 mm in width direction, and 0.43 and 0.23 mm in height direction, respectively.

Originality/value

The fabrication of circular overhanging structures without using the complicate slicing strategy, turning table or other extra support verified the possibility of the robotic WAAM system with deep learning technology.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2022

Jiayue Zhao, Yunzhong Cao and Yuanzhi Xiang

The safety management of construction machines is of primary importance. Considering that traditional construction machine safety monitoring and evaluation methods cannot adapt to…

Abstract

Purpose

The safety management of construction machines is of primary importance. Considering that traditional construction machine safety monitoring and evaluation methods cannot adapt to the complex construction environment, and the monitoring methods based on sensor equipment cost too much. This paper aims to introduce computer vision and deep learning technologies to propose the YOLOv5-FastPose (YFP) model to realize the pose estimation of construction machines by improving the AlphaPose human pose model.

Design/methodology/approach

This model introduced the object detection module YOLOv5m to improve the recognition accuracy for detecting construction machines. Meanwhile, to better capture the pose characteristics, the FastPose network optimized feature extraction was introduced into the Single-Machine Pose Estimation Module (SMPE) of AlphaPose. This study used Alberta Construction Image Dataset (ACID) and Construction Equipment Poses Dataset (CEPD) to establish the dataset of object detection and pose estimation of construction machines through data augmentation technology and Labelme image annotation software for training and testing the YFP model.

Findings

The experimental results show that the improved model YFP achieves an average normalization error (NE) of 12.94 × 103, an average Percentage of Correct Keypoints (PCK) of 98.48% and an average Area Under the PCK Curve (AUC) of 37.50 × 103. Compared with existing methods, this model has higher accuracy in the pose estimation of the construction machine.

Originality/value

This study extends and optimizes the human pose estimation model AlphaPose to make it suitable for construction machines, improving the performance of pose estimation for construction machines.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 September 2023

Mariam Moufaddal, Asmaa Benghabrit and Imane Bouhaddou

The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”…

Abstract

Purpose

The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”. The ability of companies to cope with these changes is a key competitive advantage requiring the adoption/mastery of industry 4.0 technologies. Therefore, companies must adapt their business processes to fit into similar situations.

Design/methodology/approach

The proposed methodology comprises three steps. First, a comparative analysis of the existing CPSs is elaborated. Second, following this analysis, a deep learning driven CPS framework is proposed highlighting its components and tiers. Third, a real industrial case is presented to demonstrate the application of the envisioned framework. Deep learning network-based methods of object detection are used to train the model and evaluation is assessed accordingly.

Findings

The analysis revealed that most of the existing CPS frameworks address manufacturing related subjects. This illustrates the need for a resilient industrial CPS targeting other areas and considering CPSs as loopback systems preserving human–machine interaction, endowed with data tiering approach for easy and fast data access and embedded with deep learning-based computer vision processing methods.

Originality/value

This study provides insights about what needs to be addressed in terms of challenges faced due to unforeseen situations or adapting to new ones. In this paper, the CPS framework was used as a monitoring system in compliance with the precautionary measures (social distancing) and for self-protection with wearing the necessary equipments. Nevertheless, the proposed framework can be used and adapted to any industrial or non-industrial environments by adjusting object detection purpose.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 28 June 2022

Miao Yanzi, Wang Xiaolin, Zhang Yuanhao, Ji Liang, Wang Yizhou and Xu Zhiyang

The purpose of this paper is to improve the precision of gangue detection. In the real production environment, some gangue features are not obvious, and it is difficult to…

Abstract

Purpose

The purpose of this paper is to improve the precision of gangue detection. In the real production environment, some gangue features are not obvious, and it is difficult to distinguish between coal and gangue. The color of the conveyor belt is similar to the gangue, the background noise also brings challenge to gangue detection. To address the above problems, we propose a feature aggregation method based on optical flow (FAOF).

Design/methodology/approach

An FAOF is proposed. First, to enhance the feature representation of the current frame, FAOF applies the timing information of video stream, propagates the feature information of the past few frames to the current frame by optical flow. Second, the coordinate attention (CA) module is adopted to suppress the noise impact brought by the background of convey belt. Third, the Mish activation function is used to replace rectified linear unit to improve the generalization capability of our model.

Findings

The experimental results show that the gangue detection model proposed in this paper improve 4.3 average precision compared to baseline. This model can effectively improve the accuracy of gangue detection in real production environment.

Originality/value

The key contributions are as follows: this study proposes an FAOF; this study adds CA module and Mish to reduce noise from the background of the conveyor belt; and this study also constructs a large gangue data set.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 January 2024

Guoyang Wan, Yaocong Hu, Bingyou Liu, Shoujun Bai, Kaisheng Xing and Xiuwen Tao

Presently, 6 Degree of Freedom (6DOF) visual pose measurement methods enjoy popularity in the industrial sector. However, challenges persist in accurately measuring the visual…

Abstract

Purpose

Presently, 6 Degree of Freedom (6DOF) visual pose measurement methods enjoy popularity in the industrial sector. However, challenges persist in accurately measuring the visual pose of blank and rough metal casts. Therefore, this paper introduces a 6DOF pose measurement method utilizing stereo vision, and aims to the 6DOF pose measurement of blank and rough metal casts.

Design/methodology/approach

This paper studies the 6DOF pose measurement of metal casts from three aspects: sample enhancement of industrial objects, optimization of detector and attention mechanism. Virtual reality technology is used for sample enhancement of metal casts, which solves the problem of large-scale sample sampling in industrial application. The method also includes a novel deep learning detector that uses multiple key points on the object surface as regression objects to detect industrial objects with rotation characteristics. By introducing a mixed paths attention module, the detection accuracy of the detector and the convergence speed of the training are improved.

Findings

The experimental results show that the proposed method has a better detection effect for metal casts with smaller size scaling and rotation characteristics.

Originality/value

A method for 6DOF pose measurement of industrial objects is proposed, which realizes the pose measurement and grasping of metal blanks and rough machined casts by industrial robots.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 October 2023

Komal Ghafoor, Tauqir Ahmad, Muhammad Aslam and Samyan Wahla

Assistive technology has been developed to assist the visually impaired individuals in their social interactions. Specifically designed to enhance communication skills, facilitate…

Abstract

Purpose

Assistive technology has been developed to assist the visually impaired individuals in their social interactions. Specifically designed to enhance communication skills, facilitate social engagement and improve the overall quality of life, conversational assistive technologies include speech recognition APIs, text-to-speech APIs and various communication tools that are real. Enable real-time interaction. Using natural language processing (NLP) and machine learning algorithms, the technology analyzes spoken language and provides appropriate responses, offering an immersive experience through voice commands, audio feedback and vibration alerts.

Design/methodology/approach

These technologies have demonstrated their ability to promote self-confidence and self-reliance in visually impaired individuals during social interactions. Moreover, they promise to improve social competence and foster better relationships. In short, assistive technology in conversation stands as a promising tool that empowers the visually impaired individuals, elevating the quality of their social engagement.

Findings

The main benefit of assistive communication technology is that it will help visually impaired people overcome communication barriers in social contexts. This technology helps them communicate effectively with acquaintances, family, co-workers and even strangers in public places. By enabling smoother and more natural communication, it works to reduce feelings of isolation and increase overall quality of life.

Originality/value

Research findings include successful activity recognition, aligning with activities on which the VGG-16 model was trained, such as hugging, shaking hands, talking, walking, waving and more. The originality of this study lies in its approach to address the challenges faced by the visually impaired individuals in their social interactions through modern technology. Research adds to the body of knowledge in the area of assistive technologies, which contribute to the empowerment and social inclusion of the visually impaired individuals.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 19