Search results

11 – 20 of over 23000
Article
Publication date: 3 May 2016

Kai Wang, Shiting Wen, Rizwan Zahoor, Ming Li and Božidar Šarler

The purpose of this paper is to find solution of Stokes flow problems with Dirichlet and Neumann boundary conditions in axisymmetry using an efficient non-singular method of…

Abstract

Purpose

The purpose of this paper is to find solution of Stokes flow problems with Dirichlet and Neumann boundary conditions in axisymmetry using an efficient non-singular method of fundamental solutions that does not require an artificial boundary, i.e. source points of the fundamental solution coincide with the collocation points on the boundary. The fundamental solution of the Stokes pressure and velocity represents analytical solution of the flow due to a singular Dirac delta source in infinite space.

Design/methodology/approach

Instead of the singular source, a non-singular source with a regularization parameter is employed. Regularized axisymmetric sources were derived from the regularized three-dimensional sources by integrating over the symmetry coordinate. The analytical expressions for related Stokes flow pressure and velocity around such regularized axisymmetric sources have been derived. The solution to the problem is sought as a linear combination of the fields due to the regularized sources that coincide with the boundary. The intensities of the sources are chosen in such a way that the solution complies with the boundary conditions.

Findings

An axisymmetric driven cavity numerical example and the flow in a hollow tube and flow between two concentric tubes are chosen to assess the performance of the method. The results of the newly developed method of regularized sources in axisymmetry are compared with the results obtained by the fine-grid second-order classical finite difference method and analytical solution. The results converge with a finer discretization, however, as expected, they depend on the value of the regularization parameter. The method gives accurate results if the value of this parameter scales with the typical nodal distance on the boundary.

Originality/value

Analytical expressions for the axisymmetric blobs are derived. The method of regularized sources is for the first time applied to axisymmetric Stokes flow problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 August 2021

Salam Adel Al-Bayati and Luiz C. Wrobel

The purpose of this paper is to describe an extension of the boundary element method (BEM) and the dual reciprocity boundary element method (DRBEM) formulations developed for one…

Abstract

Purpose

The purpose of this paper is to describe an extension of the boundary element method (BEM) and the dual reciprocity boundary element method (DRBEM) formulations developed for one- and two-dimensional steady-state problems, to analyse transient convection–diffusion problems associated with first-order chemical reaction.

Design/methodology/approach

The mathematical modelling has used a dual reciprocity approximation to transform the domain integrals arising in the transient equation into equivalent boundary integrals. The integral representation formula for the corresponding problem is obtained from the Green’s second identity, using the fundamental solution of the corresponding steady-state equation with constant coefficients. The finite difference method is used to simulate the time evolution procedure for solving the resulting system of equations. Three different radial basis functions have been successfully implemented to increase the accuracy of the solution and improving the rate of convergence.

Findings

The numerical results obtained demonstrate the excellent agreement with the analytical solutions to establish the validity of the proposed approach and to confirm its efficiency.

Originality/value

Finally, the proposed BEM and DRBEM numerical solutions have not displayed any artificial diffusion, oscillatory behaviour or damping of the wave front, as appears in other different numerical methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 June 2020

Adam Basílio, Fran Sérgio Lobato and Fábio de Oliveira Arouca

The study of heat transfer mechanisms is an area of great interest because of various applications that can be developed. Mathematically, these phenomena are usually represented…

Abstract

Purpose

The study of heat transfer mechanisms is an area of great interest because of various applications that can be developed. Mathematically, these phenomena are usually represented by partial differential equations associated with initial and boundary conditions. In general, the resolution of these problems requires using numerical techniques through discretization of boundary and internal points of the domain considered, implying a high computational cost. As an alternative to reducing computational costs, various approaches based on meshless (or meshfree) methods have been evaluated in the literature. In this contribution, the purpose of this paper is to formulate and solve direct and inverse problems applied to Laplace’s equation (steady state and bi-dimensional) considering different geometries and regularization techniques. For this purpose, the method of fundamental solutions is associated to Tikhonov regularization or the singular value decomposition method for solving the direct problem and the differential Evolution algorithm is considered as an optimization tool for solving the inverse problem. From the obtained results, it was observed that using a regularization technique is very important for obtaining a reliable solution. Concerning the inverse problem, it was concluded that the results obtained by the proposed methodology were considered satisfactory, as even with different levels of noise, good estimates for design variables in proposed inverse problems were obtained.

Design/methodology/approach

In this contribution, the method of fundamental solution is used to solve inverse problems considering the Laplace equation.

Findings

In general, the proposed methodology was able to solve inverse problems considering different geometries.

Originality/value

The association between the differential evolution algorithm and the method of fundamental solutions is the major contribution.

Article
Publication date: 1 November 2000

Maria T. Ibáñez and H. Power

The main objective is to develop an efficient BEM scheme for the numerical solution of two‐dimensional heat problems. Our scheme will be of the re‐initialization type, in which…

Abstract

The main objective is to develop an efficient BEM scheme for the numerical solution of two‐dimensional heat problems. Our scheme will be of the re‐initialization type, in which the domain integrals are computed by a recursion relation which depends only on the boundary temperature and flux at previous time step. To obtain the re‐initialization approach, we will use in the integral representation formula a Green function corresponding to zero temperature in a box containing the original domain, instead of using the classical free space fundamental solution. This Green function is given in terms of the original fundamental solution plus a regular solution of the heat equation inside the domain under consideration. It can therefore be used in the integral representation formula of the heat equation (direct formulation) to obtain the solution of a heat problem in such a domain. The Green function mentioned can be obtained by the images method, and the resulting source series can also be rewritten in terms of a double Fourier series, that we will use in the domain integral of the integral representation formula to transform such integral into equivalent surface integrals.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 November 2020

Hillal Ayas, Lyes Amara and Mohamed Chabaat

In this paper, an approximate analytical approach is developed for the determination of natural longitudinal frequencies of a cantilever-cracked beam based on the Lagrange…

Abstract

Purpose

In this paper, an approximate analytical approach is developed for the determination of natural longitudinal frequencies of a cantilever-cracked beam based on the Lagrange inversion theorem.

Design/methodology/approach

The crack is modeled by an equivalent axial spring with stiffness according to Castigliano's theorem. Thus, an implicit frequency equation corresponding to cantilever-cracked bar is obtained. The resulting equation is solved using the Lagrange inversion theorem.

Findings

Effect of different crack depths and crack positions on natural frequencies of the cracked beam is analyzed. It is shown that an increase in the crack depth ratio produces a decrease in the fundamental longitudinal natural frequency of a cracked bar. Furthermore, approximate analytical results are compared with those obtained numerically as well as from experimental tests.

Originality/value

A new approximate analytical expression of a fundamental longitudinal frequency, as a function of crack depth and crack location, is obtained.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 September 2017

Vijay Chawla, Sanjeev Ahuja and Varsha Rani

The purpose of this paper is to study the fundamental solution in transversely isotropic micropolar thermoelastic media. With this objective, the two-dimensional general solution

Abstract

Purpose

The purpose of this paper is to study the fundamental solution in transversely isotropic micropolar thermoelastic media. With this objective, the two-dimensional general solution in transversely isotropic thermoelastic media is derived.

Design/methodology/approach

On the basis of the general solution, the fundamental solution for a steady point heat source on the surface of a semi-infinite transversely isotropic micropolar thermoelastic material is constructed by six newly introduced harmonic functions.

Findings

The components of displacement, stress, temperature distribution and couple stress are expressed in terms of elementary functions. From the present investigation, a special case of interest is also deduced and compared with the previous results obtained.

Practical implications

Fundamental solutions can be used to construct many analytical solutions of practical problems when boundary conditions are imposed. They are essential in the boundary element method as well as the study of cracks, defects and inclusions.

Originality/value

Fundamental solutions for a steady point heat source acting on the surface of a micropolar thermoelastic material is obtained by seven newly introduced harmonic functions. From the present investigation, some special cases of interest are also deduced.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 October 2014

V. Kobelev

The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author…

Abstract

Purpose

The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author develops the equations for transverse vibrations of the axially loaded helical springs. The method is based on the concept of an equivalent column. Second, the author reveals the effect of axial load on the fundamental frequency of transverse vibrations and derive the explicit formulas for this frequency. The fundamental natural frequency of the transverse vibrations of the spring depends on the variable length of the spring. The reduction of frequency with the load is demonstrated. Finally, when the frequency nullifies, the side buckling spring occurs.

Design/methodology/approach

Helical springs constitute an integral part of many mechanical systems. A coil spring is a special form of spatially curved column. The center of each cross-section is located on a helix. The helix is a curve that winds around with a constant slope of the surface of a cylinder. An exact stability analysis based on the theory of spatially curved bars is complicated and difficult for further applications. Hence, in most engineering applications a concept of an equivalent column is introduced. The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The transverse vibration is represented by a differential equation of fourth order in place and second order in time. The solution of the undamped model equation could be obtained by separation of variables. The fundamental natural frequency of the transverse vibrations depends on the current length of the spring. Natural frequency is the function of the deflection and slenderness ratio. Is the fundamental natural frequency of transverse oscillations nullifies, the lateral buckling of the spring with the natural form occurs. The mode shape corresponds to the buckling of the spring with moment-free, simply supported ends. The mode corresponds to the buckling of the spring with clamped ends. The author finds the critical spring compression.

Findings

Buckling refers to the loss of stability up to the sudden and violent failure of seed straight bars or beams under the action of pressure forces, whose line of action is the column axis. The known results for the buckling of axially overloaded coil springs were found using the static stability criterion. The author uses an alternative approach method for studying the stability of the spring. This method is based on dynamic equations. In this paper, the author derives the equations for transverse vibrations of the pressure-loaded coil springs. The fundamental natural frequency of the transverse vibrations of the column is proved to be the certain function of the axial force, as well as the variable length of the spring. Is the fundamental natural frequency of transverse oscillations turns to be to zero, is the lateral buckling of the spring occurs.

Research limitations/implications

The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The more accurate model is based on the equations of motion of loaded helical Timoshenko beams. The dimensionless for beams of circular cross-section and the number of parameters governing the problem is reduced to four (helix angle, helix index, Poisson coefficient, and axial strain) is to be derived. Unfortunately, that for the spatial beam models only numerical results could be obtained.

Practical implications

The closed form analytical formulas for fundamental natural frequency of the transverse vibrations of the column as function of the axial force, as well as the variable length of the spring are derived. The practically important formulas for lateral buckling of the spring are obtained.

Originality/value

In this paper, the author derives the new equations for transverse vibrations of the pressure-loaded coil springs. The author demonstrates that the fundamental natural frequency of the transverse vibrations of the column is the function of the axial force. For study of the stability of the spring the author uses an alternative approach method. This method is based on dynamic equations. The new, original expressions for lateral buckling of the spring are also obtained.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2005

Chongbin Zhao, B.E. Hobbs, A. Ord, Ge Lin and H.B. Mühlhaus

In many scientific and engineering fields, large‐scale heat transfer problems with temperature‐dependent pore‐fluid densities are commonly encountered. For example, heat transfer…

Abstract

Purpose

In many scientific and engineering fields, large‐scale heat transfer problems with temperature‐dependent pore‐fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large‐scale heat transfer problems with temperature‐dependent pore‐fluid densities in the lithosphere and crust scales.

Design/methodology/approach

The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts.

Findings

From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive‐and‐advective lithosphere with variable pore‐fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere.

Originality/value

The present analytical solutions can be used to: validate numerical methods for solving large‐scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large‐scale heat transfer problems with temperature‐dependent fluid densities.

Details

Engineering Computations, vol. 22 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 January 2020

Peichao Li, Linzhong Li and Mengmeng Lu

The purpose of this paper is to present a semi-analytical solution to one-dimensional (1D) consolidation induced by a constant inner point sink in viscoelastic saturated soils.

115

Abstract

Purpose

The purpose of this paper is to present a semi-analytical solution to one-dimensional (1D) consolidation induced by a constant inner point sink in viscoelastic saturated soils.

Design/methodology/approach

Based on the Kelvin–Voigt constitutive law and 1D consolidation equation of saturated soils subject to an inner sink, the analytical solutions of the effective stress, the pore pressure and the surface settlement in Laplace domain were derived by using Laplace transform. Then, the semi-analytical solutions of the pore pressure and the surface settlement in physical domain were obtained by implementing Laplace numerical inversion via Crump method.

Findings

As for the case of linear elasticity, it is shown that the simplified form of the presented solution in this study is the same as the available analytical solution in the literature. This to some degree depicts that the proposed solution in this paper is reliable. Finally, parameter studies were conducted to investigate the effects of the relevant parameters on the consolidation settlement of saturated soils. The presented solution and method are of great benefit to provide deep insights into the 1D consolidation behavior of viscoelastic saturated soils.

Originality/value

The presented solution and method are of great benefit to provide deep insights into the 1D consolidation behavior of viscoelastic saturated soils. Consolidation behavior of viscoelastic saturated soils could be reasonably predicted by using the proposed solution with considering variations of both flux and depth because of inner point sink.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

11 – 20 of over 23000