Search results

1 – 10 of over 4000
Article
Publication date: 14 September 2023

Yazhou Wang, Dehong Luo, Xuelin Zhang, Zhitao Wang, Hui Chen, Xiaobo Zhang, Ningning Xie, Shengwei Mei, Xiaodai Xue, Tong Zhang and Kumar K. Tamma

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF…

Abstract

Purpose

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF) algorithms with variable time step size, and the adaptive time-stepping in BDF algorithms is demonstrated for efficient time-dependent simulations in fluid flow and heat transfer.

Design/methodology/approach

The Lagrange interpolation polynomial is used to predict the time derivative, and then the accurate primary result is obtained by the Gauss integral, which is applied to evaluate the local error. Not only the generalized formula of the proposed error estimator is presented but also the specific expression for the widely applied BDF1/2/3 is illustrated. Two essential executable MATLAB functions to implement the proposed error estimator are appended for practical applications. Then, the adaptive time-stepping is demonstrated based on the newly proposed error estimator for BDF algorithms.

Findings

The validation tests show that the newly proposed error estimator is accurate such that the effectivity index is always close to unity for both linear and nonlinear problems, and it avoids under/overestimation of the exact local error. The applications for fluid dynamics and coupled fluid flow and heat transfer problems depict the advantage of adaptive time-stepping based on the proposed error estimator for time-dependent simulations.

Originality/value

In contrast to existing error estimators for BDF algorithms, the present work is more accurate for the local error estimation, and it can be readily extended to practical applications in engineering with a few changes to existing codes, contributing to efficient time-dependent simulations in fluid flow and heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 August 2008

M. Rezaiee‐Pajand and J. Alamatian

This paper aims to provide a simple and accurate higher order predictor‐corrector integration which can be used in dynamic analysis and to compare it with the previous works.

Abstract

Purpose

This paper aims to provide a simple and accurate higher order predictor‐corrector integration which can be used in dynamic analysis and to compare it with the previous works.

Design/methodology/approach

The predictor‐corrector integration is defined by combining the higher order explicit and implicit integrations in which displacement and velocity are assumed to be functions of accelerations of several previous time steps. By studying the accuracy and stability conditions, the weighted factors and acceptable time step are determined.

Findings

Simplicity and vector operations plus accuracy and stability are the main specifications of the new predictor‐corrector method. This procedure can be used in linear and nonlinear dynamic analysis.

Research limitations/implications

In the proposed integration, time step is assumed to be constant.

Practical implications

The numerical integration is the heart of a dynamic analysis. The result's accuracy is strongly influenced by the accuracy and stability of the numerical integration.

Originality/value

This paper presents simple and accurate predictor‐corrector integration based on accelerations of several previous time steps. This may be used as a routine in any dynamic analysis software to enhance accuracy and reduce computational time.

Details

Engineering Computations, vol. 25 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Rhodri LT Bevan and P Nithiarasu

In the present work, a novel dual time stepping approach is applied to a quasi-implicit (QI) fractional step method and its performance is assessed against the classical versions…

Abstract

Purpose

In the present work, a novel dual time stepping approach is applied to a quasi-implicit (QI) fractional step method and its performance is assessed against the classical versions of the QI procedure for the solution of incompressible Navier-Stokes equations. The paper aims to discuss these issues.

Design/methodology/approach

In the proposed method, a local time stepping algorithm is utilised to accelerate the solution to steady state, while the transient solution is recovered through the use of a dual time step. It is demonstrated that, unlike the classical fractional step method, the temporal convergence rate of the proposed method depends solely upon the choice of the time discretisation.

Findings

While additional stabilisation is the prerequisite for obtaining higher order accuracy in the standard QI methods, the proposed dual time stepping approach completely eliminates this requirement. In addition, the dual time stepping approach proposed achieves the correct formal accuracy in time for both velocity and pressure. It is also demonstrated that a time accuracy beyond second order for both pressure and velocity is possible. In summary, the proposed dual time approach to QI methods simplifies the algorithm, accelerates solution and achieves a higher order time accuracy.

Originality/value

The dual time stepping removed first order pressure error.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2018

Nikhil Kalkote, Ashwani Assam and Vinayak Eswaran

The purpose of this paper is to solve unsteady compressible Navier–Stokes equations without the commonly used dual-time loop. The authors would like to use an adaptive…

254

Abstract

Purpose

The purpose of this paper is to solve unsteady compressible Navier–Stokes equations without the commonly used dual-time loop. The authors would like to use an adaptive time-stepping (ATS)-based local error control instead of CFL-based time-stepping technique. Also, an all-speed flow algorithm is implemented with simple low dissipation AUSM convective scheme, which can be computed without preconditioning which in general destroys the time accuracy.

Design/methodology/approach

In transient flow computations, the time-step is generally determined from the CFL condition. In this paper, the authors demonstrate the usefulness of ATS based on local time-stepping previously used extensively in ordinary differential equations (ODE) integration. This method is implemented in an implicit framework to ensure the numerical domain of dependence always contains the physical domain of dependence.

Findings

In this paper, the authors limit their focus to capture the unsteady physics for three cases: Sod’s shock-tube problem, Stokes’ second problem and a circular cylinder. The use of ATS with local truncation error control enables the solver to use the maximum allowable time-step, for the prescribed tolerance of error. The algorithm is also capable of converging very rapidly to the steady state (if there is any) after the initial transient phase. The authors present here only the first-order time-stepping scheme. An algorithmic comparison is made between the proposed adaptive time-stepping method and the commonly used dual time-stepping approach that indicates the former will be more efficient.

Originality/value

The original method of ATS based on local error control is used extensively in ODE integration, whereas, this method is not so popular in the computational fluid dynamics (CFD) community. In this paper, the authors investigate its use in the unsteady CFD computations. The authors hope that it would provide CFD researchers with an algorithm based on an adaptive time-stepping approach for unsteady calculations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2004

Catherine O'Sullivan and Jonathan D. Bray

The distinct element method as proposed by Cundall and Strack uses the computationally efficient, explicit, central difference time integration scheme. A limitation of this scheme…

3911

Abstract

The distinct element method as proposed by Cundall and Strack uses the computationally efficient, explicit, central difference time integration scheme. A limitation of this scheme is that it is only conditionally stable, so small time steps must be used. Some researchers have proposed using an implicit time integration scheme to avoid the stability issues arising from the explicit time integrator typically used in these simulations. However, these schemes are computationally expensive and can require a significant number of iterations to form the stiffness matrix that is compatible with the contact state at the end of each time step. In this paper, a new, simple approach for calculating the critical time increment in explicit discrete element simulations is proposed. Using this approach, it is shown that the critical time increment is a function of the current contact conditions. Considering both two‐ and three‐dimensional scenarios, the proposed refined estimates of the critical time step indicate that the earlier recommendations contained in the literature can be unconservative, in that they often overestimate the actual critical time step. A three‐dimensional simulation of a problem with a known analytical solution illustrates the potential for erroneous results to be obtained from discrete element simulations, if the time‐increment exceeds the critical time step for stable analysis.

Details

Engineering Computations, vol. 21 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2022

Yazhou Wang, Ningning Xie, Likun Yin, Tong Zhang, Xuelin Zhang, Shengwei Mei, Xiaodai Xue and Kumar Tamma

The purpose of this paper is to describe a novel universal error estimator and the adaptive time-stepping process in the generalized single-step single-solve (GS4-1) computational…

Abstract

Purpose

The purpose of this paper is to describe a novel universal error estimator and the adaptive time-stepping process in the generalized single-step single-solve (GS4-1) computational framework, applied for the fluid dynamics with illustrations to incompressible Navier–Stokes equations.

Design/methodology/approach

The proposed error estimator is universal and versatile that it works for the entire subsets of the GS4-1 framework, encompassing the nondissipative Crank–Nicolson method, the most dissipative backward differential formula and anything in between. It is new and novel that the cumbersome design work of error estimation for specific time integration algorithms can be avoided. Regarding the numerical implementation, the local error estimation has a compact representation that it is determined by the time derivative variables at four successive time levels and only involves vector operations, which is simple for numerical implementation. Additionally, the adaptive time-stepping is further illustrated by the proposed error estimator and is used to solve the benchmark problems of lid-driven cavity and flow past a cylinder.

Findings

The proposed computational procedure is capable of eliminating the nonphysical oscillations in GS4-1(1,1)/Crank–Nicolson method; being CPU-efficient in both dissipative and nondissipative schemes with better solution accuracy; and detecting the complex physics and hence selecting a suitable time step according to the user-defined error threshold.

Originality/value

To the best of the authors’ knowledge, for the first time, this study applies the general purpose GS4-1 family of time integration algorithms for transient simulations of incompressible Navier–Stokes equations in fluid dynamics with constant and adaptive time steps via a novel and universal error estimator. The proposed computational framework is simple for numerical implementation and the time step selection based on the proposed error estimation is efficient, benefiting to the computational expense for transient simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 May 2023

Xiaoyu Liu, Suchuan Dong and Zhi Xie

This paper aims to present an unconditionally energy-stable scheme for approximating the convective heat transfer equation.

Abstract

Purpose

This paper aims to present an unconditionally energy-stable scheme for approximating the convective heat transfer equation.

Design/methodology/approach

The scheme stems from the generalized positive auxiliary variable (gPAV) idea and exploits a special treatment for the convection term. The original convection term is replaced by its linear approximation plus a correction term, which is under the control of an auxiliary variable. The scheme entails the computation of two temperature fields within each time step, and the linear algebraic system resulting from the discretization involves a coefficient matrix that is updated periodically. This auxiliary variable is given by a well-defined explicit formula that guarantees the positivity of its computed value.

Findings

Compared with the semi-implicit scheme and the gPAV-based scheme without the treatment on the convection term, the current scheme can provide an expanded accuracy range and achieve more accurate simulations at large (or fairly large) time step sizes. Extensive numerical experiments have been presented to demonstrate the accuracy and stability performance of the scheme developed herein.

Originality/value

This study shows the unconditional discrete energy stability property of the current scheme, irrespective of the time step sizes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1996

Tianhong Ouyang and Kumar K. Tamma

Thermal solidification processes are an important concern in today’smanufacturing technology. Because of the complex geometric nature ofreal‐world problems, analytical techniques…

Abstract

Thermal solidification processes are an important concern in today’s manufacturing technology. Because of the complex geometric nature of real‐world problems, analytical techniques with closed‐form solutions are scarce and/or not feasible. As a consequence, various numerical techniques have been employed for the numerical simulations. Of interest in the present paper are thermal solidification problems involving single or multiple arbitary phases. In order to effectively handle such problems, the finite element method is employed in conjunction with adaptive time stepping approaches to accurately and effectively track the various phase fronts and describe the physics of phase front interactions and thermal behaviour. In conjunction with the enthalpy method which is employed to handle the latent heat release, a fixed‐grid finite element technique and an automatic time stepping approach which uses the norm of the temperature distribution differences between adjacent time step levels to control the error are employed with the scale of the norm being automatically selected. Several numerical examples, including single and multiple phase change problems, are described.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

Mehdi Mosharaf Dehkordi, Mehrdad T. Manzari, H. Ghafouri and R. Fatehi

– The purpose of this paper is to present a detailed algorithm for simulating three-dimensional hydrocarbon reservoirs using the blackoil model.

Abstract

Purpose

The purpose of this paper is to present a detailed algorithm for simulating three-dimensional hydrocarbon reservoirs using the blackoil model.

Design/methodology/approach

The numerical algorithm uses a cell-centred structured grid finite volume method. The blackoil formulation is written in a way that an Implicit Pressure Explicit Saturation approach can be used. The flow field is obtained by solving a general gas pressure equation derived by manipulating the governing equations. All possible variations of the pressure equation coefficients are given for different reservoir conditions. Key computational details including treatment of non-linear terms, expansion of accumulation terms, transitions from under-saturated to saturated states and vice versa, high gas injection rates, evolution of gas in the oil production wells and adaptive time-stepping procedures are elaborated.

Findings

It was shown that using a proper linearization method, less computational difficulties occur especially when free gas is released with high rates. The computational performance of the proposed algorithm is assessed by solving the first SPE comparative study problem with both constant and variable bubble point conditions.

Research limitations/implications

While discretization is performed and implemented for unstructured grids, the numerical results are presented only for structured grids, as expected, the accuracy of numerical results are best for structured grids. Also, the reservoir is assumed to be non-fractured.

Practical implications

The proposed algorithm can be efficiently used for simulating a wide range of practical problems wherever blackoil model is applicable.

Originality/value

A complete and detailed description of ingredients of an efficient finite volume-based algorithm for simulating blackoil flows in hydrocarbon reservoirs is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2015

Martin Joseph Guillot and Steve C McCool

The purpose of this paper is to investigate the effect of numerical boundary condition implementation on local error and convergence in L2-norm of a finite volume discretization…

Abstract

Purpose

The purpose of this paper is to investigate the effect of numerical boundary condition implementation on local error and convergence in L2-norm of a finite volume discretization of the transient heat conduction equation subject to several boundary conditions, and for cases with volumetric heat generation, using both fully implicit and Crank-Nicolson time discretizations. The goal is to determine which combination of numerical boundary condition implementation and time discretization produces the most accurate solutions with the least computational effort.

Design/methodology/approach

The paper studies several benchmark cases including constant temperature, convective heating, constant heat flux, time-varying heat flux, and volumetric heating, and compares the convergence rates and local to analytical or semi-analytical solutions.

Findings

The Crank-Nicolson method coupled with second-order expression for the boundary derivatives produces the most accurate solutions on the coarsest meshes with the least computation times. The Crank-Nicolson method allows up to 16X larger time step for similar accuracy, with nearly negligible additional computational effort compared with the implicit method.

Practical implications

The findings can be used by researchers writing similar codes for quantitative guidance concerning the effect of various numerical boundary condition approximations for a large class of boundary condition types for two common time discretization methods.

Originality/value

The paper provides a comprehensive study of accuracy and convergence of the finite volume discretization for a wide range of benchmark cases and common time discretization methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 4000