Search results

21 – 30 of 772
Article
Publication date: 13 November 2007

Jian Tang, Xiang Cui, Lei Qi, Tiebing Lu, Lin Li, Puxuan Zhu, Guang Yang and Weizhen Zhang

The purpose of this paper is to present a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in…

Abstract

Purpose

The purpose of this paper is to present a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in the pipelines due to the inductive coupling in the fault‐to‐ground condition of power lines in close proximity.

Design/methodology/approach

Based on finite differencetime domain method, an improved method is proposed to calculate transient inductive interference in underground metallic pipelines due to a fault in nearby power lines. The frequency‐dependent problem in the analysis of transient interference is solved in phase domain. Compared with the traditional method, the disposal of phase‐modal transformation matrices’ frequency‐dependent characteristic is avoided and the calculation is simplified by using vector fitting approach and recursive algorithm greatly in the proposed method.

Findings

A novel improved method is proposed to calculate transient induced voltage distribution along underground metallic pipelines due to a fault in nearby power lines. Results show that the peak value of transient induced voltage at the most critical point is about 1.15 times of the magnitude in the steady state without the fault removed and the analysis of transient inductive interference is necessary in the fault‐to‐ground case of power lines.

Practical implications

In order to mitigate the interference from power lines to nearby pipelines, pipelines should be good grounded and positioned as far away from the power line as possible. In high soil resistivity areas, the common corridor should be avoided.

Originality/value

The paper presents a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in the pipelines due to the inductive coupling in the fault‐to‐ground condition of nearby power lines. The proposed method is general and can also be applied to other transient interference studies such as crosstalk problems of communication networks and interference between power lines and aboveground pipelines or communication cables. Effects of various parameters upon the inductive interference generated in underground pipelines due to a fault in nearby power lines are analyzed to be a guide for controlling the inductive interference.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 July 2018

Bojana Nikolic, Bojan Dimitrijevic, Tino Hutschenreuther and Hannes Toepfer

The purpose of this paper is to analyze a signal propagation in highly metalized environments, which has not been extensively studied in the literature. Having in mind a large…

Abstract

Purpose

The purpose of this paper is to analyze a signal propagation in highly metalized environments, which has not been extensively studied in the literature. Having in mind a large number of such applications, better understanding and possibly finding a way of improving communication in these conditions would be highly beneficial.

Design/methodology/approach

The analysis is performed in a simulation environment developed by the authors, based on finite difference time domain (FDTD) method, to identify effects that have decisive influence on electromagnetic (EM) wave propagation in the aforementioned conditions. The analysis of the EM field at the reception is modified so that a multiple-field sampling is performed, and maximal values are further used. In practical realizations, this procedure could be implemented by using multiple antennas and selective combining at the reception.

Findings

Results show that the existence of metal objects (in the observed case, these are railway tracks), in combination with the appropriate choice of antenna parameters, can be favorably used to improve signal reception. The contribution is manifested through the reduction of the pathloss.

Research limitations/implications

In the performed analysis, one should be aware of the limitations that the FDTD method brings. Those limitations are related to the size of the computational domain and discretization mesh refinement (possibility of modeling geometry in fine details).

Originality/value

Originality of this paper consists of the introduced modification in the analysis of signal propagation in heavily metalized environment. Namely, a multiple-field sampling in the reception zone (in one plane, dimensions λ × λ = 12.5 cm X 12.5 cm) is performed using several probes in simulation environment. In this way, a qualitative analysis is performed more efficiently, which made it is possible to distinguish and identify different propagation mechanisms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 March 2010

M.R. Koohkan, R. Attarnejad and M. Nasseri

The purpose of this paper is to propose a semi‐analytical method for studying the interaction between reservoir and concrete gravity dams.

Abstract

Purpose

The purpose of this paper is to propose a semi‐analytical method for studying the interaction between reservoir and concrete gravity dams.

Design/methodology/approach

The reservoir is assumed to be unbounded at the far end and the solution is sought for incompressible and in‐viscid fluid. A concrete gravity dam is assumed to behave as a cantilever beam of variable section, and the inclination of the neutral axis is ignored.

Findings

It is shown that use of the differential quadrature method (DQM), with a few grid points in conjunction with the finite difference method (FDM), yields an acceptable convergence of results. Comparing the results of the proposed method with those of the literature shows the competency of the method.

Originality/value

DQM for space derivatives and FDM for time derivatives are used to discretize the partial differential equation of motion.

Details

Engineering Computations, vol. 27 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1995

D.R.J. Owen, S.Y. Zhao and J.G. Loughran

A finite element solution to the rolling of two‐phase materials ispresented and applied to the rolling of prepared sugar cane. The generalizedBiot theory is extended and modified…

Abstract

A finite element solution to the rolling of two‐phase materials is presented and applied to the rolling of prepared sugar cane. The generalized Biot theory is extended and modified to suit the present problem and the velocity of the solid skeleton and the pore pressure are taken as the primary unknowns. The finite element approach is applied to the governing equations for spatial discretization, followed by time domain discretization by standard difference methods. A constitutive relation evaluated from a finite element simulation of experiments performed on a constrained compression test cell is employed. The computational model of the rolling of prepared cane with two rolls is presented. The material parameters of prepared cane are described and their variation during the rolling process are derived and discussed. Numerical results are presented to illustrate the performance and capability of the model and solution procedures.

Details

Engineering Computations, vol. 12 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 May 2019

Hiroshi Masuda, Yoshifumi Okamoto and Shinji Wakao

The purpose of this paper is to solve efficiently the topology optimization (TO) in time domain problem with magnetic nonlinearity requiring a large-scale finite element mesh. As…

Abstract

Purpose

The purpose of this paper is to solve efficiently the topology optimization (TO) in time domain problem with magnetic nonlinearity requiring a large-scale finite element mesh. As an actual application model, the proposed method is applied to induction heating apparatus.

Design/methodology/approach

To achieve TO with efficient computation time, a multistage topology is proposed. This method can derive the optimum structure by repeatedly reducing the design domain and regenerating the finite element mesh.

Findings

It was clarified that the structure derived from proposed method can be similar to the structure derived from the conventional method, and that the computation time can be made more efficient by parameter tuning of the frequency and volume constraint value. In addition, as a time domain induction heating apparatus problem of an actual application model, an optimum topology considering magnetic nonlinearity was derived from the proposed method.

Originality/value

Whereas the entire design domain must be filled with small triangles in the conventional TO method, the proposed method requires finer mesh division of only the stepwise-reduced design domain. Therefore, the mesh scale is reduced, and there is a possibility that the computation time for TO can be shortened.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 June 2020

Lucas Lobo Latorre Fortes and Sandro Trindade Mordente Gonçalves

This paper aims to explore the limitations of the conformal finite difference time-domain method (C-FDTD or Dey–Mittra) when modeling perfect electric conducting (PEC) and…

Abstract

Purpose

This paper aims to explore the limitations of the conformal finite difference time-domain method (C-FDTD or Dey–Mittra) when modeling perfect electric conducting (PEC) and lossless dielectric curved surfaces in coarse meshes. The C-FDTD is a widely known approach to reduce error of curved surfaces in the FDTD method. However, its performance limitations are not broadly described in the literature, which are explored as a novelty in this paper.

Design/methodology/approach

This paper explores the C-FDTD method applied on field scattering simulations of two curved surfaces, a dielectric and a PEC sphere, through the frequency range from 0.8 to 10 GHz. For each sphere, the mesh was progressively impoverished to evaluate the accuracy drop and performance limitations of the C-FDTD with the mesh impoverishment, along with the wideband frequency range described.

Findings

This paper shows and quantifies the C-FDTD method’s accuracy drops as the mesh is impoverished, reducing C-FDTD’s performance. It is also shown how the performance drops differently according to the frequency of interest.

Practical implications

With this study, coarse meshes, with smaller execution time and reduced memory usage, can be further explored reliably accounting the desired accuracy, enabling a better trade-off between accuracy and computational effort.

Originality/value

This paper quantifies the limitations of the C-FDTD in coarse meshes in a wideband manner, which brings a broader and newer insight upon C-FDTD’s limitations in coarse meshes or relatively small objects in electromagnetic simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 February 2023

Solmaz Dehghanmarvasty and Vahid Lotfi

The response of an idealized triangular concrete gravity dam is studied due to horizontal and vertical ground motions for both fully reflective and absorptive reservoir bottom…

Abstract

Purpose

The response of an idealized triangular concrete gravity dam is studied due to horizontal and vertical ground motions for both fully reflective and absorptive reservoir bottom conditions. For each combination, in this paper different orders of Givoli-Neta (G-N) high-order truncation condition are aimed to be evaluated from accuracy point of view by comparing the results against corresponding exact solutions which relies on utilizing a two-dimensional fluid hyper-element.

Design/methodology/approach

In present study, the dynamic analysis of concrete gravity dam-reservoir systems is formulated by Finite Element (FE)-(FE-TE) approach. In this technique, dam and reservoir are discretized by plane solid and fluid finite elements. Moreover, the G-N high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model.

Findings

It was observed that trend in gaining accuracy with increase in the order of G-N condition were basically the same for both horizontal and vertical ground motions under full reflective reservoir bottom condition. Moreover, convergence rate increases for absorptive reservoir bottom condition cases in comparison with fully reflective cases. It is also noticed that in certain cases, the responses are hardly distinguishable from corresponding exact responses. This reveals that proposed FE-(FE-TE) analysis technique based on G-N condition is quite successful, and one may fully rely on that for accurate and efficient analysis of concrete gravity dam-reservoir systems.

Originality/value

Dynamic analysis of concrete gravity dam-reservoir systems are formulated by a new method. The salient aspect of the technique is that it utilizes G-N high-order condition at the truncation boundary. This is achieved by developing a special truncation element which its generalized matrices are derived for Finite Element Method (FEM) programmers. The method is discussed for all types of excitation and reservoir bottom conditions. It must be emphasized that although time harmonic analysis is considered in the present study, the main part of formulation is explained in the context of time domain. Therefore, the approach can easily be extended for transient type of analysis.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 November 2008

Valerio De Santis, Mauro Feliziani and Francescaromana Maradei

The aim of the paper is to apply a numerical dosimetry procedure to a biological tissue with an embedded discrete vascularisation in order to evaluate the temperature increase…

Abstract

Purpose

The aim of the paper is to apply a numerical dosimetry procedure to a biological tissue with an embedded discrete vascularisation in order to evaluate the temperature increase produced by radio‐frequency (RF) exposure.

Design/methodology/approach

The blood temperature inside thin vessels is analysed by a 1D finite difference procedure to solve the convection‐dominated heat problem. The tissue temperature inside the remaining 3D domain governed by the heat diffusion equation is calculated by the finite element method. Then, the two separate numerical methods are coupled by an iterative time domain procedure.

Findings

The main advantage of the proposed hybrid method is found to be the considerable reduction of the number of unknowns respect to other traditional numerical techniques.

Research limitations/implications

In this paper, only the numerical model of the new hybrid procedure has been proposed. In future work realistic biological regions will be examined and the proposed model will be improved by considering the artery/vein coupled structure.

Originality/value

The originality of the proposed method regards the solution of the bio‐heat equation by means of a new hybrid finite element/finite difference procedure. This procedure is applied inside a vascularized region considering a discrete blood vessel structure.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 January 2023

Antonio Campo, Diego Celentano and Yunesky Masip

The purpose of this paper is to address unsteady heat conduction in two subsets of ordinary bodies. One subset consists of a large plane wall, a long cylinder and a sphere in one…

Abstract

Purpose

The purpose of this paper is to address unsteady heat conduction in two subsets of ordinary bodies. One subset consists of a large plane wall, a long cylinder and a sphere in one dimension. The other subset consists of a short cylinder and a large rectangular bar in two dimensions. The prevalent assumptions in the two subsets are: constant initial temperature, uniform surface heat flux and thermo-physical properties invariant with temperature. The engineering applications of the unsteady heat conduction deal with the determination of temperature–time histories in the two subsets using electric resistance heating, radiative heating and fire pool heating.

Design/methodology/approach

To this end, a novel numerical procedure named the enhanced method of discretization in time (EMDT) transforms the linear one-dimensional unsteady, heat conduction equations with non-homogeneous boundary conditions into equivalent nonlinear “quasi–steady” heat conduction equations having the time variable embedded as a time parameter. The equivalent nonlinear “quasi–steady” heat conduction equations are solved with a finite difference method.

Findings

Based on the numerical computations, it is demonstrated that the approximate temperature–time histories in the simple subset of ordinary bodies (large plane wall, long cylinder and sphere) exhibit a perfect matching over the entire time domain 0 < t < ∞ when compared against the rigorous exact temperature–time histories expressed by classical infinite series. Furthermore, using the method of superposition of solutions in the convoluted subset (short cylinder and large rectangular crossbar), the same level of agreement in the approximate temperature–time histories in the simple subset of ordinary bodies is evident.

Originality/value

The performance of the proposed EMDT coupled with a finite difference method is exhaustively assessed in the solution of the unsteady, one-dimensional heat conduction equations with prescribed surface heat flux for: a subset of one-dimensional bodies (plane wall, long cylinder and spheres) and a subset of two-dimensional bodies (short cylinder and large rectangular bar).

Article
Publication date: 10 August 2010

M. Kharati Koopaee, M.M. Alishahi and H. Emdad

The purpose of this paper is to discuss the capability of nonlinear frequency domain (NLFD) method in predicting surface pressure coefficient presented in the time domain in…

Abstract

Purpose

The purpose of this paper is to discuss the capability of nonlinear frequency domain (NLFD) method in predicting surface pressure coefficient presented in the time domain in unsteady transonic flows.

Design/methodology/approach

In this research, the solution and spatial operator are approximated by discrete form of Fourier transformation and resulting nonlinear equations are solved by use of pseudo‐spectral approach. Considered transonic flows involve different flow pattern on the airfoil surfaces. One of the test cases involves moving shocks on both lower and upper airfoil surfaces and in the two other test cases a moving shock occurs only on the upper surface.

Findings

Pressure distributions presented in the time domain using NLFD are compared with three test cases. Results show that NLFD predicts reasonable pressure distributions in time domain except in vicinity of shock positions. Although this method may predict unfair results near shock positions, however gives good estimates for global properties such as lift coefficient.

Originality/value

In the previous works on NLFD method, the flow field results have been limited to representing the pressure in the frequency domain or global coefficients such as lift coefficients. No details of pressure distributions in the time domain have been provided in such investigations. In this research, by presenting the pressure in the time domain, the conditions on which good pressure distributions are obtained are demonstrated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

21 – 30 of 772