Search results

1 – 10 of 387
Article
Publication date: 15 June 2018

Rajitha Gurijala and Malla Reddy Perati

In this paper, wave propagation in a poroelastic thick-walled hollow cylinder is investigated in the framework of Biot’s extension theory. Biot’s theory of poroelasticity is valid…

Abstract

Purpose

In this paper, wave propagation in a poroelastic thick-walled hollow cylinder is investigated in the framework of Biot’s extension theory. Biot’s theory of poroelasticity is valid for isotropic porous solids saturated with non-viscous fluid. The bulk and shear viscosities are not considered in the classical Biot’s theory. Biot’s extension theory takes all these into an account. Biot’s extension theory is applied here to investigate the radial vibrations in thick-walled hollow poroelastic cylinder. The paper aims to discuss these issues.

Design/methodology/approach

By considering the stress-free boundaries, the frequency equation is obtained in the presence of dissipation. Limiting case when the ratio between thickness and inner radius is very small is investigated numerically. In the limiting case, the asymptotic expansions of Bessel functions are employed so that frequency equation is separated into two parts which gives attenuation coefficient and phase velocity. If the shear viscosity is neglected, then the problem reduces to that of the classical Biot’s theory.

Findings

For the numerical purpose, the solids Berea sandstone and bone are used. The results are presented graphically.

Originality/value

Radial vibrations of thick-walled hollow poroelastic cylinder are investigated in the framework of Biot’s extension theory. Due to the mathematical complexity, limiting case is considered. The complex valued frequency equation is discussed numerically which gives the attenuation coefficient and phase velocity. If shear viscosity is neglected, then the problem reduces to that of the classical Biot’s theory. The comparison has been made between the current results and that of classical results.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 March 2021

Y.P. Tsang, C.H. Wu, W.H. Ip and Wen-Lung Shiau

Due to the rapid growth of blockchain technology in recent years, the fusion of blockchain and the Internet of Things (BIoT) has drawn considerable attention from researchers and…

1107

Abstract

Purpose

Due to the rapid growth of blockchain technology in recent years, the fusion of blockchain and the Internet of Things (BIoT) has drawn considerable attention from researchers and industrial practitioners and is regarded as a future trend in technological development. Although several authors have conducted literature reviews on the topic, none have examined the development of the knowledge structure of BIoT, resulting in scattered research and development (R&D) efforts.

Design/methodology/approach

This study investigates the intellectual core of BIoT through a co-citation proximity analysis–based systematic review (CPASR) of the correlations between 44 highly influential articles out of 473 relevant research studies. Subsequently, we apply a series of statistical analyses, including exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), k-means clustering (KMC) and multidimensional scaling (MDS) to establish the intellectual core.

Findings

Our findings indicate that there are nine categories in the intellectual core of BIoT: (1) data privacy and security for BIoT systems, (2) models and applications of BIoT, (3) system security theories for BIoT, (4) frameworks for BIoT deployment, (5) the fusion of BIoT with emerging methods and technologies, (6) applied security strategies for using blockchain with the IoT, (7) the design and development of industrial BIoT, (8) establishing trust through BIoT and (9) the BIoT ecosystem.

Originality/value

We use the CPASR method to examine the intellectual core of BIoT, which is an under-researched and topical area. The paper also provides a structural framework for investigating BIoT research that may be applicable to other knowledge domains.

Details

Journal of Enterprise Information Management, vol. 34 no. 5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 3 December 2018

Toufiq Ouzandja and Mohamed Hadid

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil…

Abstract

Purpose

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil properties, such as pore-water saturation, non-cohesive fines content FC, permeability k, porosity n and coefficient of uniformity Cu.

Design/methodology/approach

The inhomogeneous soil profile is idealized as a multi-layered saturated poroviscoelastic medium and is characterized by the Biot’s theory, with a shear modulus varying continuously with depth according to the Wichtmann’s model. Seismic response analysis has been evaluated through a computational model, which is based on the exact stiffness matrix method formulated in the frequency domain assuming that the incoming seismic waves consist of inclined P-SV waves.

Findings

Unlike the horizontal seismic response, the results indicate that the vertical one is strongly affected by the pore water saturation. Moreover, in the case of fully saturated soil profile, the same vertical response spectra are found for the two cases of soil behavior, linear and nonlinear.

Originality/value

This research is a detailed study of the geotechnical soil properties effect on the bi-directional seismic response of saturated inhomogeneous poroviscoelastic soil profile, which has not been treated before; the results are presented in terms of the peak acceleration ratio, as well as the free-field response spectra and the spectral ratio (V/H).

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 June 2020

Sindhuja Ala, Rajitha Gurijala and Malla Reddy Perati

The purpose of this paper is to investigate the effect of reinforcement, inhomogeneity and initial stress on the propagation of shear waves. The problem consists of magneto…

Abstract

Purpose

The purpose of this paper is to investigate the effect of reinforcement, inhomogeneity and initial stress on the propagation of shear waves. The problem consists of magneto poroelastic medium sandwiched between self-reinforced medium and poroelastic half space. Using Biot’s theory of wave propagation, the frequency equation is obtained.

Design/methodology/approach

Shear wave propagation in magneto poroelastic medium embedded between a self-reinforced medium and poroelastic half space is investigated. This particular setup is quite possible in the Earth crust. All the three media are assumed to be inhomogeneous under initial stress. The significant effects of initial stress and inhomogeneity parameters of individual media have been studied.

Findings

Phase velocity is computed against wavenumber for various values of self-reinforcement, heterogeneity parameter and initial stress. Classical elasticity results are deduced as a particular case of the present study. Also in the absence of inhomogeneity and initial stress, frequency equation is discussed. Graphical representation is made to exhibit the results.

Originality/value

Shear wave propagation in magneto poroelastic medium embedded between a self-reinforced medium, and poroelastic half space are investigated in presence of initial stress, and inhomogeneity parameter. For heterogeneous poroelastic half space, the Whittaker’s solution is obtained. From the numerical results, it is observed that heterogeneity parameter, inhomogeneity parameter and reinforcement parameter have significant influences on the wave characteristics. In addition, frequency equation is discussed in absence of inhomogeneity and initial stress. For the validation purpose, numerical results are also computed for a particular case.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2005

Bo Yan, Ning Hu, Xin Lu and Masaki Kameyama

The governing equations for dynamic transient analysis of a fluid‐saturated two‐phase porous medium model based on the mixture theory are presented. A penalty finite element…

Abstract

The governing equations for dynamic transient analysis of a fluid‐saturated two‐phase porous medium model based on the mixture theory are presented. A penalty finite element formulation is derived with the general Galerkin procedure of the finite element method (FEM), and the obtained dynamic system equation can be solved with implicit or explicit time integration method, which is discussed in this paper. Using this method, a porous medium column under impulsive loading is analyzed and the results reveal the phenomena of one‐dimensional wave propagation, which are consistent with analytical solutions. Furthermore, two numerical examples of two‐dimensional problems demonstrate the existence of two body waves, i.e. longitudinal (P‐type) and transverse (S‐type) waves in porous media, and the Rayleigh wave in the vicinity of the surface of porous media.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 April 2022

Himanshu Singla and Baljeet Singh

The purpose of this paper is to analyze the propagation characteristics of the Rayleigh-type surface wave in a thermally conducting mixture of an elastic solid and a Newtonian…

63

Abstract

Purpose

The purpose of this paper is to analyze the propagation characteristics of the Rayleigh-type surface wave in a thermally conducting mixture of an elastic solid and a Newtonian fluid by applying the mixture theory.

Design/methodology/approach

The governing equations are formulated in context of both Green–Lindsay (G-L) and Lord–Shulman (L-S) theories of generalized thermoelasticity. The specialized governing equations in a plane are solved by using the traditional approach, and a dispersion equation of the Rayleigh surface wave is obtained.

Findings

A program in MATLAB software is developed to solve the dispersion equation. The numerical results demonstrate a significant dependence of the wave speed and the attenuation coefficient of the Rayleigh wave on the frequency and porosity.

Originality/value

The problem considered on Rayleigh wave on the surface of a half-space containing a thermally conducting mixture is not studied in the literature yet. The theoretical and numerical findings of the study will guide the experimental scientists while finding applications in various engineering fields.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 January 2020

Peichao Li, Linzhong Li and Mengmeng Lu

The purpose of this paper is to present a semi-analytical solution to one-dimensional (1D) consolidation induced by a constant inner point sink in viscoelastic saturated soils.

115

Abstract

Purpose

The purpose of this paper is to present a semi-analytical solution to one-dimensional (1D) consolidation induced by a constant inner point sink in viscoelastic saturated soils.

Design/methodology/approach

Based on the Kelvin–Voigt constitutive law and 1D consolidation equation of saturated soils subject to an inner sink, the analytical solutions of the effective stress, the pore pressure and the surface settlement in Laplace domain were derived by using Laplace transform. Then, the semi-analytical solutions of the pore pressure and the surface settlement in physical domain were obtained by implementing Laplace numerical inversion via Crump method.

Findings

As for the case of linear elasticity, it is shown that the simplified form of the presented solution in this study is the same as the available analytical solution in the literature. This to some degree depicts that the proposed solution in this paper is reliable. Finally, parameter studies were conducted to investigate the effects of the relevant parameters on the consolidation settlement of saturated soils. The presented solution and method are of great benefit to provide deep insights into the 1D consolidation behavior of viscoelastic saturated soils.

Originality/value

The presented solution and method are of great benefit to provide deep insights into the 1D consolidation behavior of viscoelastic saturated soils. Consolidation behavior of viscoelastic saturated soils could be reasonably predicted by using the proposed solution with considering variations of both flux and depth because of inner point sink.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 May 2023

Manjeet Kumar, Jai Bhagwan, Pradeep Kaswan, Xu Liu and Manjeet Kumari

The purpose of this study is to investigate the reflection of plane waves in a double-porosity (DP) thermoelastic medium.

Abstract

Purpose

The purpose of this study is to investigate the reflection of plane waves in a double-porosity (DP) thermoelastic medium.

Design/methodology/approach

To derive the theoretical formulas for elastic wave propagation velocities through the potential decomposition of wave-governing equations. The boundary conditions have been designed to incorporate the unique characteristics of the surface pores, whether they are open or sealed. This approach provides a more accurate and realistic mathematical interpretation of the situation that would be encountered in the field. The reflection coefficients are obtained through a linear system of equations, which is solved using the Gauss elimination method.

Findings

The solutions obtained from the governing equations reveal the presence of five inhomogeneous plane waves, consisting of four coupled longitudinal waves and a single transverse wave. The energy ratios of reflected waves are determined for both open and sealed pores on the stress-free, the thermally insulated surface of DP thermoelastic medium. In addition, the energy ratios are compared for the cases of a DP medium and a DP thermoelastic medium.

Originality/value

A numerical example is considered to investigate the effect of fluid type in inclusions, temperature and inhomogeneity on phase velocities and attenuation coefficients as a function of frequency. Finally, a sensitivity analysis is performed graphically to observe the effect of the various parameters on propagation characteristics, such as propagation/attenuation directions, phase shifts and energy ratios as a function of incident direction in double-porosity thermoelasticity medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 November 2021

Latha Madhuri Poonem, Rajitha Gurijala, Sindhuja Ala and Malla Reddy Perati

The purpose of this paper is to investigate the effect of initial stress and heterogeneity on the propagation of torsional waves in dissipative medium. The problem consists of dry…

Abstract

Purpose

The purpose of this paper is to investigate the effect of initial stress and heterogeneity on the propagation of torsional waves in dissipative medium. The problem consists of dry sand poroelastic half-space embedded between heterogeneous self-reinforced half-space and poroelastic medium. The frequency equation is derived in the framework of Biot's theory with some variants.

Design/methodology/approach

Torsional wave propagation in dry sand poroelastic half-space embedded between self-reinforced half-space and poroelastic medium. All the constituents here are assumed to be dissipative, heterogeneous and initial stressed.

Findings

Phase velocity and attenuation are computed against wavenumber for various values of self-reinforcement parameter, inhomogeneity parameter and initial stress. Particular cases are discussed in absence of dissipation. The numerical results are presented graphically.

Originality/value

Initial stress and heterogeneity effects on torsional waves in dry sand half-space between reinforced half-space and poroelastic medium are investigated. The frequency equation is derived, and which intern gives the phase velocity and attenuation coefficient for various values of initial stress, self-reinforcement parameter and heterogeneity parameter. From the numerical results, it is clear that as wavenumber varies phase velocity and attenuation are periodic in nature for all the cases. Particular cases are discussed in absence of dissipation. This kind of analysis can be extended to any elastic solid by taking magnetic, thermo and piezoelectric effects into account.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 April 2022

Magdy A. Ezzat, Shereen M. Ezzat and Modhi Y. Alkharraz

The purpose of this study is to develop a comprehensive size-dependent piezoelectric thermo-viscoelastic coupling model that accounts for two fundamentally distinct size-dependent…

146

Abstract

Purpose

The purpose of this study is to develop a comprehensive size-dependent piezoelectric thermo-viscoelastic coupling model that accounts for two fundamentally distinct size-dependent models that govern fractional dual-phase lag heat transfer and viscoelastic deformation, respectively.

Design/methodology/approach

The fractional calculus has recently been shown to capture precisely the experimental effects of viscoelastic materials. The governing equations are combined into a unified system, from which certain theorems results on linear coupled and generalized theories of thermo-viscoelasticity may be easily established. Laplace transforms and state–space approach will be used to determine the generic solution when any set of boundary conditions exists. The derived formulation is used to two concrete different problems for a piezoelectric rod. The numerical technique for inverting the transfer functions is used to generate observable numerical results.

Findings

Some analogies of impacts of nonlocal thermal conduction, nonlocal elasticity and DPL parameters as well as fractional order on thermal spreads and thermo-viscoelastic response are illustrated in the figures.

Originality/value

The results in all figures indicate that the nonlocal thermal and viscoelastic parameters have a considerable influence on all field values. This discovery might help with the design and analysis of thermal-mechanical aspects of nanoscale devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 387