Search results

1 – 10 of over 6000
Article
Publication date: 11 January 2024

Vahid Lotfi and Hesamedin Abdorazaghi

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time…

Abstract

Purpose

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by the FE-(FE-HE)-FE approach (referred to as exact method which employs a rigorous fluid hyper-element). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

Design/methodology/approach

In the present study, dynamic analysis of a typical concrete gravity dam–water–foundation rock system is formulated by the FE-(FE-TE)-FE approach. In this technique, dam and foundation rock are discretized by plane solid finite elements while, water domain near-field region is discretized by plane fluid finite elements. Moreover, the H-W (i.e. Hagstrom–Warburton) high-order condition is imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model.

Findings

High orders of H-W condition, such as O5-5 considered herein, generate highly accurate responses for both possible excitations under both types of full reflective and absorptive reservoir bottom conditions. It is such that transfer functions are hardly distinguishable from corresponding exact responses obtained through the FE-(FE-HE)-FE approach in time harmonic analyses. This is controlled for both low and high normalized reservoir length cases (L/H = 1 and 3). Moreover, it can be claimed that transient analysis leads practically to exact results (in numerical sense) when one is employing high order H-W truncation element. In other words, the results are not sensitive to reservoir normalized length under these circumstances.

Originality/value

Dynamic analysis of concrete gravity dam–water–foundation rock systems is formulated by a new method. The salient aspect of the technique is that it utilizes H-W high-order condition at the truncation boundary. The method is discussed for all types of excitation and reservoir bottom conditions.

Article
Publication date: 8 February 2023

Solmaz Dehghanmarvasty and Vahid Lotfi

The response of an idealized triangular concrete gravity dam is studied due to horizontal and vertical ground motions for both fully reflective and absorptive reservoir bottom…

Abstract

Purpose

The response of an idealized triangular concrete gravity dam is studied due to horizontal and vertical ground motions for both fully reflective and absorptive reservoir bottom conditions. For each combination, in this paper different orders of Givoli-Neta (G-N) high-order truncation condition are aimed to be evaluated from accuracy point of view by comparing the results against corresponding exact solutions which relies on utilizing a two-dimensional fluid hyper-element.

Design/methodology/approach

In present study, the dynamic analysis of concrete gravity dam-reservoir systems is formulated by Finite Element (FE)-(FE-TE) approach. In this technique, dam and reservoir are discretized by plane solid and fluid finite elements. Moreover, the G-N high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model.

Findings

It was observed that trend in gaining accuracy with increase in the order of G-N condition were basically the same for both horizontal and vertical ground motions under full reflective reservoir bottom condition. Moreover, convergence rate increases for absorptive reservoir bottom condition cases in comparison with fully reflective cases. It is also noticed that in certain cases, the responses are hardly distinguishable from corresponding exact responses. This reveals that proposed FE-(FE-TE) analysis technique based on G-N condition is quite successful, and one may fully rely on that for accurate and efficient analysis of concrete gravity dam-reservoir systems.

Originality/value

Dynamic analysis of concrete gravity dam-reservoir systems are formulated by a new method. The salient aspect of the technique is that it utilizes G-N high-order condition at the truncation boundary. This is achieved by developing a special truncation element which its generalized matrices are derived for Finite Element Method (FEM) programmers. The method is discussed for all types of excitation and reservoir bottom conditions. It must be emphasized that although time harmonic analysis is considered in the present study, the main part of formulation is explained in the context of time domain. Therefore, the approach can easily be extended for transient type of analysis.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2016

Seyed Iman Zare Estakhraji and Vahid Lotfi

Recently, the original Wavenumber approach was introduced for dynamic analysis of dam-reservoir systems in frequency domain in the context of pure finite element programming. But…

Abstract

Purpose

Recently, the original Wavenumber approach was introduced for dynamic analysis of dam-reservoir systems in frequency domain in the context of pure finite element programming. But its main disadvantages are that it cannot be implemented in time domain. The purpose of this paper is to propose an approximation to the original approach which enables one to carry out this effective method in time domain as well as in frequency domain. Based on the present investigation, it is proven that the Approximate Wavenumber approach has inherent characteristics, which allows it to be envisaged as an effective technique for calculating the response of concrete gravity dam-reservoir systems in time domain.

Design/methodology/approach

The method is described initially. Subsequently, the response of an idealized triangular dam-reservoir system is obtained by the proposed approach as well as by applying two other well-known absorbing conditions which are widely utilized in practice. The results are also controlled against the corresponding exact responses. It should be emphasized that all results presented herein are obtained by the FE-FE method under different absorbing conditions applied on the truncation boundary. These include two well-known absorbing conditions referred to as Sommerfeld and Sharan as well as the proposed approach of the present study (i.e. Approximate Wavenumber condition).

Findings

It is concluded that the maximum error for the Approximate Wavenumber approach is in the range of 10 percent at the major peaks of the response. This occurs mainly for the very low reservoir lengths under full reflective reservoir base condition and vertical excitation. This is a remarkable result for any kind of robust truncation boundary simulation that one may expect. The fundamental frequency of the system is captured correctly for the Approximate Wavenumber approach, even in cases of low reservoir length.

Originality/value

Based on this investigation, it is proven that the Approximate Wavenumber approach has inherent characteristics, which allows it to be envisaged as an effective technique for calculating the response of concrete gravity dam-reservoir systems in time domain. It is concluded that the maximum error for the Approximate Wavenumber approach is in the range of 10 percent at the major peaks of the response. This occurs mainly for the very low reservoir lengths under full reflective reservoir base condition and vertical excitation. This is a remarkable result for any kind of robust truncation boundary simulation that one may expect.

Details

Engineering Computations, vol. 33 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 October 2009

Xiaodong Wu, Junfeng Shi, Fujun Chen and Yaru Wang

The purpose of this paper is to present a new approach for selecting the good heavy oil reservoirs to develop preferentially, which can avoid the huge economical loss resulted…

264

Abstract

Purpose

The purpose of this paper is to present a new approach for selecting the good heavy oil reservoirs to develop preferentially, which can avoid the huge economical loss resulted from wrong decision.

Design/methodology/approach

A new method of ranking the development priority of heavy oil reservoir is present, in which the neural network is applied for the first time to acquire reservoir parameters' weights through training samples and the genetic algorithm is used to optimize the joint weighs of neurons in case that neural network falling into local minimum. Additionally, the paper establishes subordinate function of every parameter. Eventually, comprehensive evaluation values of all heavy oil reservoirs are obtained.

Findings

The method can ensure the veracity and creditability of the parameters' weights, avoid the randomicity brought by experts.

Research limitations/implications

Accessibility of the data of many heavy oil reservoirs is the main limitation.

Practical implications

A very useful and new method for the decision makers of heavy oil reservoirs development.

Originality/value

The new approach of ranking the development priority of heavy oil reservoir based on the neural network and the genetic algorithm. The paper is aimed at the leaders who manage the development of heavy oil reservoirs.

Details

Kybernetes, vol. 38 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 February 2021

Vahid Lotfi and Ali Lotfi

Subsequently, the response of idealized Morrow Point arch dam is studied due to stream, vertical and cross-stream ground motions for reservoir bottom/sidewalls conditions of both…

Abstract

Purpose

Subsequently, the response of idealized Morrow Point arch dam is studied due to stream, vertical and cross-stream ground motions for reservoir bottom/sidewalls conditions of both fully reflective and absorptive. For each combination, different orders of Hagstrom–Warburton (HW) condition are evaluated from accuracy point of view by comparing them against exact solutions. It should be emphasized that normalized length of reservoir near-field region is taken as a very low value of L/H = 0.2 during this process which makes it a very challenging test for any kind of truncation boundary condition.

Design/methodology/approach

In present study, dynamic analysis of concrete arch dam-reservoir systems is formulated by FE-(FE-TE) approach [i.e. finite element-(finite element-truncation element)]. In this technique, dam and reservoir are discretized by solid and fluid finite elements. Moreover, the HW high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model. The formulation is initially explained in details.

Findings

The trend in gaining accuracy with increase in order of HW condition were basically the same for all three types of excitations under both full reflective and absorptive reservoir bottom/sidewalls conditions. The only exception was for cross-stream excitation response which was showing less accurate results near the first major peak for moderate orders of HW (e.g. O3-2) in comparison to what was observed for responses due to symmetric excitations (stream and vertical). This is mainly attributed to the selection of evanescent-type parameters of HW condition which is based on the first symmetric mode of reservoir. However, it is noted that error diminishes even for cross-stream excitation as order increases. High orders of HW condition, such as O5-5 considered herein, generate highly accurate responses for all three possible excitations under both types of full reflective and absorptive reservoir bottom/sidewalls conditions. It is such that responses are hardly distinguishable from corresponding exact responses. This reveals that proposed FE-(FE-TE) analysis technique based on HW condition is quite successful, and one may fully rely on that for accurate and efficient analysis of concrete arch dam-reservoir systems.

Originality/value

Dynamic analysis of concrete arch dam-reservoir system is formulated by new method. HW high-order condition is applied for a very low and challenging reservoir length. Different orders are evaluated against exact solution with excellent agreement. Generalized matrices of truncation element are derived for FEM programmers. The method is discussed for all types of excitation and reservoir base conditions.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Mohamed Gamal Rezk and A.A. Abdelwaly

This paper aims to analyze the pressure behavior in dual porosity reservoirs using different techniques in an attempt to correctly characterize reservoir properties. Pressure…

Abstract

Purpose

This paper aims to analyze the pressure behavior in dual porosity reservoirs using different techniques in an attempt to correctly characterize reservoir properties. Pressure transient tests in naturally fractured reservoirs often exhibit non-uniform responses.

Design/methodology/approach

The pressure transient tests in naturally fractured reservoirs were analyzed using conventional semi-log analysis, type curve matching (using commercial software) and Tiab’s direct synthesis (TDS) technique. In addition, the TDS method was applied in case of a naturally fractured formation with a vertical hydraulic fracture. These techniques were applied to a single-layer, naturally fractured reservoir under pseudosteady state matrix flow. By studying the unique characteristics of the different flow regimes appear on the pressure and pressure derivative curves, various reservoir characteristics can be obtained such as permeability, skin factor and fracture properties.

Findings

For naturally fractured reservoirs, a comparison between the results semi-log analysis, software matching and TDS method is presented. In case of wellbore storage, early time flow regime can be obscured that lead to incomplete semi-log analysis. Furthermore, the type curve matching usually gives a non-uniqueness solution, as it needs all the flow regimes to be observed. However, the direct synthesis method used analytical equation to calculate reservoir and well parameters without type curve matching. For naturally fractured reservoirs with a vertical fracture, the pressure behavior of wells crossed by a uniform flux and infinite conductivity fracture is analyzed using TDS technique. The different flow regimes on the pressure derivative curve were used to calculate the fracture half-length in addition to other reservoir properties.

Originality/value

The results of different field cases showed that TDS technique offers several advantages compared to semi-log analysis and type curve matching. It can be used even if some flow regimes are not observed. Direct synthesis results are accurate compared to the available core data and the software matching results. It can be used to confirm the software matching results and to give reliable reservoir characteristics when there is lack of data.

Details

World Journal of Engineering, vol. 14 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 May 2020

Margit Neisig

The purpose is to investigate a position for engaged scholarship bridging the gulf between theorizing and practice in a social system perspective using Design Thinking for…

Abstract

Purpose

The purpose is to investigate a position for engaged scholarship bridging the gulf between theorizing and practice in a social system perspective using Design Thinking for assisting the emergence of a semantic reservoir in a polycentric network “in spe”.

Design/methodology/approach

The paper combines social systems theory with the concept of engaged scholarship based on Design Thinking, and illustrates how such a research position might be applied to problems of polycentric networks as a theoretical/methodological case.

Findings

The paper concludes on a possible role for an engaged scholarship as a midwife assisting the emergence of a shared semantic reservoir that is needed to make commitments and couplings possible to become a polycentric network. Design Thinking is explained as a structured way to irritate (disturb) other systems, and the role of a shared semantic reservoir for a polycentric network “in spe” is accounted for.

Originality/value

Bridging the gulf between theorizing and practice in management theory is under-explored, and social systems theory underlines the immanent rigor-relevance gap, which this paper suggests a way not to overcome, but to bridge. The discussion of the rigor-relevance gap is revisited. Also, the critical process for a shared semantic reservoir to emerge in the formation of poly-centric networks is underexplored and so are its role for coupling of networks. The conceptual understanding thereof is also contributed to.

Details

Journal of Organizational Change Management, vol. 34 no. 4
Type: Research Article
ISSN: 0953-4814

Keywords

Article
Publication date: 9 January 2017

Marcus Vinicius Estigoni, Renato Billia Miranda and Frederico Fabio Mauad

Finer sediment particles (silt and clay) transported by rivers carry the major part of nutrient loads by absorption; thus, sediment settling can remove nutrients from the water…

Abstract

Purpose

Finer sediment particles (silt and clay) transported by rivers carry the major part of nutrient loads by absorption; thus, sediment settling can remove nutrients from the water column. The purpose of this paper is to analyze the relation between reservoir sedimentation and water quality by assessing the reservoir sedimentation process and the sediments’ characteristics.

Design/methodology/approach

Bathymetric surveys from 2004 to 2014 were analyzed to assess the sedimentation process. Core samples provided information on a layer-by-layer basis of the sediment deposits, and water samples near the surface and near the bottom provided information on sediment concentration, and adsorbed and dissolved nutrients.

Findings

The upstream region of a reservoir is already silted. From 2004 to 2014, the delta evoluted approximately 500 m downstream and the deposits were mainly composed of clay. An area of approximately 1,000 m between the delta and the dam should still be able to continue allowing sediment deposition in the coming years. Most of the nutrients were absorbed into the sediment particles, except for the nitrogen measured in the dry season.

Research limitations/implications

Although analyses of the full cycle of the nutrients were not carried out, the constant sediment trapping of finer sediments and the high rate of absorbed nutrients in the suspended sediment support the hypothesis that the reservoir has removed nutrients from aqueous media by adsorption into sediments.

Practical implications

In the studied case, reservoir sedimentation has led to better water quality downstream.

Originality/value

It is shown in this study that reservoir sedimentation may have positive effects on river water quality.

Details

Management of Environmental Quality: An International Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 5 May 2015

Raffaella Santagiuliana, Massimo Fabris and Bernhard Aribo Schrefler

The purpose of this paper is to give an explanation of the new data available about surface subsidence above the depleted gas reservoir Ravenna Terra. These data confirm the…

Abstract

Purpose

The purpose of this paper is to give an explanation of the new data available about surface subsidence above the depleted gas reservoir Ravenna Terra. These data confirm the existence after end of exploitation of a reversed subsidence bowl with minimum subsidence above the reservoir, as opposed to conventional subsidence bowls during exploitation which show maximum subsidence in the same location.

Design/methodology/approach

The paper analyses these new data about the existence after end of exploitation of a reversed subsidence bowl. The observed behaviour is reproduced successfully with a fully coupled two phase flow code in deforming reservoir rocks which incorporates a constitutive model for partially saturated porous media.

Findings

The paper provides successful simulations. These allow affirming with confidence that the explanation for the peculiar behaviour is reservoir flooding and partially saturated rock behaviour.

Research limitations/implications

Further research: other case studies where similar behaviour is expected, e.g. Ekofisk.

Practical implications

The paper includes implications for better management of reservoir exploitation schedules to minimize the observed phenomenon.

Originality/value

This paper explains the peculiar behaviour of subsidence above the depleted gas reservoir Ravenna Terra and confirms the conjecture that constitutive behaviour of partially saturated rocks is the origin of the observed phenomenon.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 December 2016

Samarth D. Patwardhan, Fatemeh Famoori and Suresh Kumar Govindarajan

This paper aims to review the quad-porosity shale system from a production standpoint. Understanding the complex but coupled flow mechanisms in such reservoirs is essential to…

Abstract

Purpose

This paper aims to review the quad-porosity shale system from a production standpoint. Understanding the complex but coupled flow mechanisms in such reservoirs is essential to design appropriate completions and further, optimally produce them. Dual-porosity and dual permeability models are most commonly used to describe a typical shale gas reservoir.

Design/methodology/approach

Characterization of such reservoirs with extremely low permeability does not aptly capture the physics and complexities of gas storage and flow through their existing nanopores. This paper reviews the methods and experimental studies used to describe the flow mechanisms of gas through such systems, and critically recommends the direction in which this work could be extended. A quad-porosity shale system is defined not just as porosity in the matrix and fracture, but as a combination of multiple porosity values.

Findings

It has been observed from studies conducted that shale gas production modeled with conventional simulator/model is seen to be much lower than actually observed in field data. This paper reviews the various flow mechanisms in shale nanopores by capturing the physics behind the actual process. The contribution of Knudson diffusion and gas slippage, gas desorption and gas diffusion from Kerogen to total production is studied in detail.

Originality/value

The results observed from experimental studies and simulation runs indicate that the above effects should be considered while modeling and making production forecast for such reservoirs.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 6000