Search results

1 – 10 of 23
Article
Publication date: 24 October 2023

Alireza Khodabandeh and Mohammad Mahdi Abootorabi

First, the effect of magnetic field intensity and nano-ferrofluid concentrations on surface roughness was evaluated in magnetic minimum quantity lubrication (MMQL). Then, the…

Abstract

Purpose

First, the effect of magnetic field intensity and nano-ferrofluid concentrations on surface roughness was evaluated in magnetic minimum quantity lubrication (MMQL). Then, the effect of lubricant flow rate and nozzle position on surface roughness was investigated in MQL, MMQL, electrostatic MQL (EMQL) and electromagnetic MQL (EMMQL).

Design/methodology/approach

This study examined the performance of MQL under magnetic and electric fields in turning AISI 304 stainless steel in terms of surface roughness and compared the results with those obtained from wet cutting and MQL turning operations. To prepare the nano-ferrofluid used in different states of MQL, Fe3O4 nanoparticles were added to the base fluid.

Findings

The results showed that the surface roughness under the EMMQL technique decreased by 36% and 49.4% on average compared with wet and MQL techniques, respectively. The lubrication technique affected the surface roughness by 90.2%, whereas it was 8.3% for the lubricant flow rate. EMQL and EMMQL techniques had no significant difference in their effects on surface roughness. In the innovative MMQL technique, the nano-ferrofluid concentration of 6% and magnetic field intensity of 93 G resulted in lower surface roughness of the workpiece relative to other counterparts.

Originality/value

Examining previously published studies showed that using nano-ferrofluids under a magnetic field for cooling purposes in machining processes have less considered by researchers. This study applies an innovative method of lubrication under the concurrent effect of magnetic and electric fields, called EMMQL, to improve the efficiency of MQL in machining hard-to-cut materials. For comprehensively inspecting the newly presented method, the effects of several parameters, including the nano-ferrofluid concentration, magnetic field intensity, lubricant flow rate and position of lubricant spray nozzle, on the surface roughness of workpiece in turning of AISI 304 stainless steel are investigated.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 November 2023

Marcin Szczęch and Kuldip Raj

Ferrofluid seals are known for their low friction torque and high tightness. However, they have some limitation due to the allowable rotational speed. The work presented here…

Abstract

Purpose

Ferrofluid seals are known for their low friction torque and high tightness. However, they have some limitation due to the allowable rotational speed. The work presented here analyzes the performance of newly designed seals which are a combination of a ferrofluid and a centrifugal seal. The new seals can operate at high speeds. The purpose of this study is to theoretically predict the performance of combined seals.

Design/methodology/approach

Three seals were designed and selected for analysis. A version of the seals with a nonmagnetic insert is also considered, the purpose of which is to facilitate the installation and return of ferrofluid during low rotational speeds. The analyses were based on combining the results of numerical simulation of magnetic field distribution with mathematical models.

Findings

A combination of ferrofluid sealing and centrifugal sealing is possible. Analyses showed that the combined seal could hold a minimum pressure of 190 kPa in the velocity range of 0–100 m/s. The problem with this type of seal is the temperature.

Originality/value

New seal designs are presented. Key parameters that affect the seal operation are discussed. A methodology that can be used in the design of such seals is presented.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0221/.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 January 2024

Bengisen Pekmen Geridonmez and Hakan Oztop

The purpose of this study is to investigate the interaction between magnetotactic bacteria and Fe3O4–water nanofluid (NF) in a wavy enclosure in the presence of 2D natural…

Abstract

Purpose

The purpose of this study is to investigate the interaction between magnetotactic bacteria and Fe3O4–water nanofluid (NF) in a wavy enclosure in the presence of 2D natural convection flow.

Design/methodology/approach

Uniform magnetic field (MF), Brownian and thermophoresis effects are also contemplated. The dimensionless, time-dependent equations are governed by stream function, vorticity, energy, nanoparticle concentration and number of bacteria. Radial basis function-based finite difference method for the space derivatives and the second-order backward differentiation formula for the time derivatives are performed. Numerical outputs in view of isolines as well as average Nusselt number, average Sherwood number and flux density of microorganisms are presented.

Findings

Convective mass transfer rises if any of Lewis number, Peclet number, Rayleigh number, bioconvection Rayleigh number and Brownian motion parameter increases, and the flux density of microorganisms is an increasing function of Rayleigh number, bioconvection Rayleigh number, Peclet number, Brownian and thermophoresis parameters. The rise in buoyancy ratio parameter between 0.1 and 1 and the rise in Hartmann number between 0 and 50 reduce all outputs average Nusselt, average Sherwood numbers and flux density of microorganisms.

Research limitations/implications

This study implies the importance of the presence of magnetotactic bacteria and magnetite nanoparticles inside a host fluid in view of heat transfer and fluid flow. The limitation is to check the efficiency on numerical aspect. Experimental observations would be more effective.

Practical implications

In practical point of view, in a heat transfer and fluid flow system involving magnetite nanoparticles, the inclusion of magnetotactic bacteria and MF effect provide control over fluid flow and heat transfer.

Social implications

This is a scientific study. However, this idea may be extended to sustainable energy or biofuel studies, too. This means that a better world may create better social environment between people.

Originality/value

The presence of magnetotactic bacteria inside a Fe3O4–water NF under the effect of a MF is a good controller on fluid flow and heat transfer. Since the magnetotactic bacteria is fed by nanoparticles Fe3O4 which has strong magnetic property, varying nanoparticle concentration and Brownian and thermophoresis effects are first considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2024

Devender, Paras Ram and Kushal Sharma

The present article aims to investigate the squeeze effects on hematite suspension-based curved annular plates with Rosensweig’s viscosity and Kozeny–Carman’s porous structure…

Abstract

Purpose

The present article aims to investigate the squeeze effects on hematite suspension-based curved annular plates with Rosensweig’s viscosity and Kozeny–Carman’s porous structure under the variable strong magnetic field and slip in the Shliomis model. The variable magnetic field is utilised to retain all magnetic elements within the model. The aforementioned mechanism would have the benefit of generating a maximal field at the system’s required active contact zone.

Design/methodology/approach

The Kozeny–Carman globular sphere model is used for porous facing. Rosensweig’s extension of Einstein’s viscosity is taken into consideration to enhance the fluid’s viscosity, and Beavers and Joseph’s slip boundary conditions are employed to assess the slip effect.

Findings

The pressure and lifting force under squeezing are computed through modification of the Reynolds equation with the addition of Kozeny–Carman’s model-based porosity, Rosensweig’s viscosity, slip and varying magnetic field. The obtained results for the lifting force are very encouraging and have been compared with Einstein’s viscosity-based model.

Originality/value

Researchers so far have carried out problems on lubrication of various sliders considering Einstein’s viscosity only, whereas in our problem, Rosensweig’s viscosity has been taken along with Kozeny–Carman’s porous structure model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

27

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2023

Jiabao Pan, Rui Li and Ao Wang

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Abstract

Purpose

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Design/methodology/approach

Nano magnetorheological grease was prepared via a thermal water bath with stirring. The lubricating properties of the grease were investigated at different temperatures. Then the lubricity of the prepared nano magnetorheological grease was investigated under the effect of thermomagnetic coupling.

Findings

As the temperature rises, the coefficient of friction of grease lubrication gradually increases, surface wear gradually increases and lubrication performance gradually decreases. Compared with grease, magnetorheological grease has a decreased coefficient of friction and enhanced lubrication effect under the action of a magnetic field at different temperatures.

Originality/value

A lubrication method using a magnetic field to reduce the effect of temperature is established, thereby providing new ideas for lubrication design under a wide range of temperature conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 October 2023

Kaikai Shi, Hanan Lu, Xizhen Song, Tianyu Pan, Zhe Yang, Jian Zhang and Qiushi Li

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn…

Abstract

Purpose

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn impacting the potential fuel burn reduction of the aircraft. Usually, in the preliminary design stage of a BLI propulsion system, it is essential to assess the impact of fuselage boundary layer fluids on fan aerodynamic performances under various flight conditions. However, the hub region flow loss is one of the major loss sources in a fan and would greatly influence the fan performances. Moreover, the inflow distortion also results in a complex and highly nonlinear mapping relation between loss and local physical parameters. It will diminish the prediction accuracy of the commonly used low-fidelity computational approaches which often incorporate traditional physics-based loss models, reducing the reliability of these approaches in evaluating fan performances. Meanwhile, the high-fidelity full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) approach, even though it can give rather accurate loss predictions, is extremely time-consuming. This study aims to develop a fast and accurate hub loss prediction method for a BLI fan under distorted inflow conditions.

Design/methodology/approach

This paper develops a data-driven hub loss prediction method for a BLI fan under distorted inflows. To improve the prediction accuracy and applicability, physical understandings of hub flow features are integrated into the modeling process. Then, the key physical parameters related to flow loss are screened by conducting a sensitivity analysis of influencing parameters. Next, a quasi-steady assumption of flow is made to generate a training sample database, reducing the computational time by acquiring one single sample from the highly time-consuming full-annulus URANS approach to a cost-efficient single-blade-passage approach. Finally, a radial basis function neural network is used to establish a surrogate model that correlates the input parameters and the output loss.

Findings

The data-driven hub loss model shows higher prediction accuracy than the traditional physics-based loss models. It can accurately capture the circumferentially and radially nonuniform variation trends of the losses and the associated absolute magnitudes in a BLI fan under different blade load, inlet distortion intensity and rotating speed conditions. Compared with the high-fidelity full-annulus URANS results, the averaged relative prediction errors of the data-driven hub loss model are kept less than 10%.

Originality/value

The originality of this paper lies in developing a new method for predicting flow loss in a BLI fan rotor blade hub region. This method offers higher prediction accuracy than the traditional loss models and lower computational time cost than the full-annulus URANS approach, which could realize fast evaluations of fan aerodynamic performances and provide technical support for designing high-performance BLI fans.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Sara Armou, Mustapha Ait Hssain, Soufiane Nouari, Rachid Mir and Kaoutar Zine-Dine

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled…

Abstract

Purpose

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled horizontal channel, using a Cu-H2O nanofluid under mixed convection and laminar flow.

Design/methodology/approach

The mathematical model is two-dimensional and comprises a system of four governing equations, such as the conservation of continuity, momentum and energy. To obtain numerical solutions for these equations, the finite volume method was used for discretization. A validation process was performed by comparing this study’s results with those of previously published studies. The comparison revealed a close agreement. The numerical study was performed for a wide range of key parameters: The baffle height (0 ≤ h ≤ 0.7), the spacing distance between baffle and blocks (0.25 ≤ w ≤ 3), the Grashof and Reynolds numbers are kept equal to 104 and 75, respectively, the channel aspect ratio is L/H = 10, and the volume fraction of Cu nanoparticles is fixed at φ = 5%.

Findings

The results of the study reveal a significant improvement in heat transfer in terms of total Nusselt number of the top and bottom hot components, which exhibited an improvement of 16.89% and 17.23% when the baffle height increases from h = 0 to h = 0.7. Additionally, the study found that reducing the distance between the baffle and the electronic components up to a certain limit can improve the heat transfer rate. Therefore, the optimal height of the baffle was found to be no lower than 0.6, and the recommended distance between the heaters and the baffle was 0.5.

Originality/value

This study provides valuable insights into the optimization of the design of baffled channels for improved heat transfer performance. The findings of study can be used to improve heat exchangers and cooling systems in various applications. The use of Cu-H2O nanofluid under mixed convection and laminar flow conditions in channel with baffle and electronic components is also unique, making this study an original contribution to the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 6 months (23)

Content type

Article (23)
1 – 10 of 23