Search results

1 – 10 of 292
Article
Publication date: 15 January 2024

Nirmalendu Biswas, Deep Chatterjee, Sandip Sarkar and Nirmal K. Manna

This study aims to investigate the influence of wall curvature in a semicircular thermal annular system on magneto-nanofluidic flow, heat transfer and entropy generation. The…

Abstract

Purpose

This study aims to investigate the influence of wall curvature in a semicircular thermal annular system on magneto-nanofluidic flow, heat transfer and entropy generation. The analysis is conducted under constant cooling surface and fluid volume constraints.

Design/methodology/approach

The mathematical equations describing the thermo-fluid flow in the semicircular system are solved using the finite element technique. Four different heating wall configurations are considered, varying the undulation numbers of the heated wall. Parametric variations of bottom wall undulation (f), buoyancy force characterized by the Rayleigh number (Ra), magnetic field strength represented by the Hartmann number (Ha) and inclination of the magnetic field (γ) on the overall thermal performance are studied extensively.

Findings

This study reveals that the fluid circulation strength is maximum in the case of a flat bottom wall. The analysis shows that the bottom wall contour and other control parameters significantly influence fluid flow, entropy production and heat transfer. The modified heated wall with a single undulation exhibits the highest entropy production and thermal convection, leading to a heat transfer enhancement of up to 21.85% compared to a flat bottom. The magnetic field intensity and orientation have a significant effect on heat transfer and irreversibility production.

Research limitations/implications

Further research can explore a wider range of parameter values, alternative heating wall profiles and boundary conditions to expand the understanding of magneto-nanofluidic flow in semicircular thermal systems.

Originality/value

This study introduces a constraint-based analysis of magneto-nanofluidic thermal behavior in a complex semicircular thermal system, providing insights into the impact of wall curvature on heat transfer performance. The findings contribute to the design and optimization of thermal systems in various applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 July 2021

Hamza Berrehal, G. Sowmya and Oluwole Daniel Makinde

In heat transfer, fluids and nanoparticles can provide new innovative technologies with potential to adapt the heat transfer fluid’s thermal properties through control over…

Abstract

Purpose

In heat transfer, fluids and nanoparticles can provide new innovative technologies with potential to adapt the heat transfer fluid’s thermal properties through control over particle size, shape and others. This paper aims to examine the effects of spherical and non-spherical (cylinder, disk, platelets, etc.) shapes of silver (Ag) nanoparticles on heat transfer enhancement and inherent irreversibility in hydromagnetic water base nanoliquid flow over a convectively heated stretching sheet with heat generation/absorption.

Design/methodology/approach

Applying suitable similarity constraints, the model partial differential equations are transformed into a set of nonlinear ordinary differential equations. Solutions are obtained analytically via optimal homotopy asymptotic method (OHAM) and numerically via shooting technique coupled with the Runge-Kutta-Fehlberg (RK-F) method.

Findings

The impact of Ag nanoparticle’s shape along with other germane factors, such as Biot number, magnetic field, solid volume fraction and heat source/sink on velocity and thermal profiles, Nusselt number, skin friction coefficient, heat transfer enhancement, rate of entropy generation and irreversibility ratio, are scrutinized via graphical simulations and discussed. This study revealed that cylindrical shape Ag nanoparticles generate high entropy and fluid friction irreversibility, whereas disk shape Ag nanoparticles exhibit high transfer enhancement rate. Moreover, a boost in magnetic field intensity, volume-fraction parameter and Biot number enhances the thermal boundary layer thickness.

Originality/value

The main objective of this work is to examine the different Ag nanoparticles shape effects on the heat transfer enhancement and inherent irreversibility owing to hydromagnetic nanoliquid flow past a convectively heated stretching sheet with heat source/sink, which has not been yet studied. It is hope that this study will bridge the gap in the present literature and serve as impetus to scholars, engineers and industries for more exploration in this direction. The intrinsic nonlinearity of the model equations precludes its exact solution; hence, OHAM and shooting technique coupled with the RK-F method have been used to numerically tackle the problem. Pertinent results are discussed quantitatively and displayed graphically and in tabular form.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2017

Mikhail Sheremet, Ioan Pop, Hakan F. Öztop and Nidal Abu-Hamdeh

The main purpose of this numerical study is to study on entropy generation in natural convection of nanofluid in a wavy cavity using a single-phase nanofluid model.

Abstract

Purpose

The main purpose of this numerical study is to study on entropy generation in natural convection of nanofluid in a wavy cavity using a single-phase nanofluid model.

Design/methodology/approach

The cavity is heated non-uniformly from the wavy wall and cooled from the right side while it is insulated from the horizontal walls. The physical domain of the problem is transformed into a rectangular geometry in the computational domain using an algebraic coordinate transformation by introducing new independent variables ξ and η. The governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The governing parameters are Rayleigh number (Ra = 1000-100000), Prandtl number (Pr = 6.82), solid volume fraction parameter of nanoparticles (φ = 0.0-0.05), aspect ratio parameter (A = 1), undulation number (κ = 1-3), wavy contraction ratio (b = 0.1-0.3) and dimensionless time (τ = 0-0.27).

Findings

It is found that the average Bejan number is an increasing function of nanoparticle volume fraction and a decreasing function of the Rayleigh number, undulation number and wavy contraction ratio. Also, an insertion of nanoparticles leads to an attenuation of convective flow and enhancement of heat transfer.

Originality

The originality of this work is to analyze the entropy generation in natural convection within a wavy nanofluid cavity using single-phase nanofluid model. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and will be a way to predict the properties of this flow for the possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2023

Tahir Naseem and Azeem Shahzad

The purpose of this study is to examine the flow and heat transfer performance of titanium oxide/water and copper/water nanofluids with varying nanoparticle morphologies by…

Abstract

Purpose

The purpose of this study is to examine the flow and heat transfer performance of titanium oxide/water and copper/water nanofluids with varying nanoparticle morphologies by considering magnetic, Joule heating and viscous dissipation effects. Furthermore, it studies the irreversibility caused by the flow of a hydromagnetic nanofluid past a radiated stretching sheet by considering different shapes of TiO2 and Cu nanoparticles with water as the base fluid.

Design/methodology/approach

In this study, the authors investigated entropy production in an unsteady two-dimensional magneto-hydrodynamic nanofluid regime using water as the base fluid and five unique TiO2 and Cu nanoparticle morphologies. Using appropriate similarity transformations, the controlling nonlinear system of partial differential equations is transformed into a system of ordinary differential equations. The shooting technique with Runge–Kutta method was then used to solve these equations quantitatively. The findings of this study are depicted graphically, and the skin friction corresponding to various nanoparticle geometries and physical parameter variations is tabulated.

Findings

To assess the reliability of the current findings, a tabular representation of the data was compared to that of previously published studies. It is noted that a reduction in thermal energy was detected as a result of the higher levels of Prandtl number (Pr). It is further analysed that the highest heat energy generation of TiO2 nanoparticles was larger than that of Cu nanoparticles. The most important finding was that the sphere-shaped Cu/H2O nanofluid had the lowest velocity and greatest temperature. Also, Cu nanoparticles in the shape of platelets generate the most entropy, while TiO2 nanoparticles in the shape of spheres generate the least.

Originality/value

To the best of the knowledge of the authors, the attempt to investigate the previously unexplored shape effects of TiO2 and Cu nanoparticles on the heat transfer enhancement and inherent irreversibility caused by hydromagnetic nanofluid flow past a radiated stretching sheet with magnetic, Joule heating and viscous dissipation effects. This study fills this gap in the existing literature and encourages scientists, engineers and businesses to do more research in this area. This model can be used to improve heat transfer in systems that use renewable energy, thermal management in industry and the processing of materials.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 July 2021

Hosein Shaker, Mohsen Izadi, Ehsanolah Assareh, Sabir Ali Shehzad and Mikhail Sheremet

This study aims to use the thermal non-equilibrium approach to inquire the entropy production and conjugate natural heat exchange in a porous medium. Entropy generation is studied…

Abstract

Purpose

This study aims to use the thermal non-equilibrium approach to inquire the entropy production and conjugate natural heat exchange in a porous medium. Entropy generation is studied separately for the solid matrix and the hybrid nanoliquid.

Design/methodology/approach

The characteristic equations are unraveled by applying the finite element method. Mathematical relations are used to calculate the generated entropy for the hybrid nanoliquid and matrix structure.

Findings

Based on the results, the produced entropy and the viscous friction term associated with the hybrid nanoliquid phase are not affected by increasing the thermal conductivity ratio of the rigid wall to nanoliquid. Moreover, a higher amount of entropy is generated by the thermal gradients in the hybrid nanoliquid phase compared to the solid matrix.

Originality/value

No investigation in the literature has been reported in this context.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2019

Ridha Djebali, Abdallah Jaouabi, Taoufik Naffouti and Said Abboudi

The purpose of this paper is to carry out an in-depth analysis of heat dissipation performance by natural convection phenomenon inside light-emitting diode (LED) lamps containing…

Abstract

Purpose

The purpose of this paper is to carry out an in-depth analysis of heat dissipation performance by natural convection phenomenon inside light-emitting diode (LED) lamps containing hot pin-fins because of its significant industrial applications.

Design/methodology/approach

The problem is assimilated to heat transfer inside air-filled rectangular cavity with various governing parameters appraised in ranges interesting engineering application and scientific research. The lattice Boltzmann method is used to predict the dynamic and thermal behaviors. Effects of monitoring parameters such as Rayleigh number Ra (103-106), fin length (0-0.25) and its position, pin-fins number (1-8), the tilting-angle (0-180°) and cavity aspect ratio Ar (0.25-4) are carried out.

Findings

The rising behaviors of the dynamic and thermal structures and heat transfer rate (Nu), the heatlines distribution and the irreversibility rate are appraised. It was found that the flow is constantly two contra-rotating symmetric cells. The heat transfer is almost doubled by increasing Ra. A lack of cooling performance was identified between Ar = 0.5 and 0.75. The inclination 45° is the most appropriate cooling case. At constant Ra, the maximum stream-function and the global entropy generation remain almost unchanged by increasing the pin number from 1 to 8 and the entropy generation is of thermal origin for low Ra, so that the fluid friction irreversibility becomes dominant for Ra larger than 105.

Research limitations/implications

Improvements may include three-dimensional complex geometries, accounting for thermal radiation, high unit power and turbulence modelling. Such factors effects will be conducted in the future.

Practical implications

The cooling performance/heat dissipation in LED lamps is a key manufacturing factors, which determines the lifetime of the electronic components. The best design and installation give the opportunity to increase further the product shelf-life.

Originality/value

Both cooling performance, irreversibility rate and enclosure configuration (aspect ratio and inclination) are taken into account. This cooling scheme will give a superior operating mode of the hot components in an era where energy harvesting, storage and consumption is met with considerable attention in the worldwide.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

Kazem Esmailpour, Behnam Bozorgmehr, Seyed Mostafa Hosseinalipour and Arun S. Mujumdar

The purpose of this paper is to examine entropy generation rate in the flow and temperature field due pulsed impinging jet on to a flat plate. Heat transfer of pulsed impinging…

Abstract

Purpose

The purpose of this paper is to examine entropy generation rate in the flow and temperature field due pulsed impinging jet on to a flat plate. Heat transfer of pulsed impinging jets has been investigated by many researchers. Entropy generation is one of the parameters related to the second law of thermodynamics which must be analyzed in processes with heat transfer and fluid flow in order to design efficient systems. Effect of velocity profile parameters and various nozzle to plate distances on viscous and thermal entropy generation are investigated.

Design/methodology/approach

In this study, the flow and temperature field of a pulsed turbulent impinging jet are simulated numerically by the finite volume method with appropriate boundary conditions. Then, flow and temperature results are used to calculate the rate of entropy generation due to heat transfer and viscous dissipation.

Findings

Results show that maximum viscous and thermal entropy generation occurs in the lowest nozzle to plate distance and entropy generation decreases as the nozzle to plate distance increases. Entropy generation in the two early phase of a period in the most frequencies is more than steady state whereas a completely opposite behavior happens in the two latter phase. Increase in the pulsation frequency and amplitude leads to enhancement in entropy generation because of larger temperature and velocity gradients. This phenomenon appears second and even third peaks in entropy generation plots in higher pulsation frequency and amplitude.

Research limitations/implications

The predictions may be extended to include various pulsation signal shape, multiple jet configuration, the radiation effect and phase difference between jets.

Practical implications

The results of this paper are a valuable source of information for active control of transport phenomena in impinging jet configurations which is used in different industrial applications such as cooling, heating and drying processes.

Originality/value

In this paper the entropy generation of pulsed impinging jet was studied for the first time and a comprehensive discussion on numerical results is provided.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2023

Chandan Kumawat, Bhupendra Kumar Sharma, Taseer Muhammad and Liaqat Ali

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past…

Abstract

Purpose

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past couple of decades, the percentage of deaths associated with blood vessel diseases has risen sharply to nearly one third of all fatalities. For vascular disease to be stopped in its tracks, it is essential to understand the vascular geometry and blood flow within the artery. In recent scenarios, because of higher thermal properties and the ability to move across stenosis and tumor cells, nanoparticles are becoming a more common and effective approach in treating cardiovascular diseases and cancer cells.

Design/methodology/approach

The present mathematical study investigates the blood flow behavior in the overlapped stenosed curved artery with cylinder shape catheter. The induced magnetic field and entropy generation for blood flow in the presence of a heat source, magnetic field and nanoparticle (Fe3O4) have been analyzed numerically. Blood is considered in artery as two-phases: core and plasma region. Power-law fluid has been considered for core region fluid, whereas Newtonian fluid is considered in the plasma region. Strongly implicit Stone’s method has been considered to solve the system of nonlinear partial differential equations (PDE’s) with 10–6 tolerance error.

Findings

The influence of various parameters has been discussed graphically. This study concludes that arterial curvature increases the probability of atherosclerosis deposition, while using an external heating source flow temperature and entropy production. In addition, if the thermal treatment procedure is carried out inside a magnetic field, it will aid in controlling blood flow velocity.

Originality/value

The findings of this computational analysis hold great significance for clinical researchers and biologists, as they offer the ability to anticipate the occurrence of endothelial cell injury and plaque accumulation in curved arteries with specific wall shear stress patterns. Consequently, these insights may contribute to the potential alleviation of the severity of these illnesses. Furthermore, the application of nanoparticles and external heat sources in the discipline of blood circulation has potential in the medically healing of illness conditions such as stenosis, cancer cells and muscular discomfort through the usage of beneficial effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 July 2024

Jiahao Lu, Ran Tao, Di Zhu and Ruofu Xiao

This study focuses on the CFD numerical simulation and analysis of the vortex stacking problem at the top of the impeller of a high-speed fuel pump, mainly using LCS and entropy

Abstract

Purpose

This study focuses on the CFD numerical simulation and analysis of the vortex stacking problem at the top of the impeller of a high-speed fuel pump, mainly using LCS and entropy production theory to visualize the vortex at the top of the impeller as well as quantitatively analyzing the energy loss caused by the vortex at the top of the impeller. By combining the two methods, the two are well verified with each other that the stacking problem of the vortex at the top of the impeller and the location of the energy loss caused by the vortex are consistent with the vortex location. Such a method can reveal the problem of vortex buildup at the top of the lobe well, and provide a novel guidance idea for improving the performance of high-speed fuel pumps.

Design/methodology/approach

Based on CFD numerical simulation and analysis, this study mainly uses LCS and entropy production theory to visualize the top vortex of the impeller. Through the combination of the two methods, the accumulation problem of the top vortex of the impeller and the location of the energy loss caused by the vortex can be well revealed.

Findings

(1) The CFD numerical simulation analysis of the high-speed fuel pump is carried out, and the test is conducted to verify the numerical simulation results. The inlet and outlet pressure difference? P is used as the validation index, and the error analysis shows that the error between numerical simulation and test results is within 10%, which meets our requirements. Therefore, we carry out the next analysis with the help of CFD numerical simulation. By analyzing the full working condition simulation, its inlet and outlet differential pressure? P and efficiency? Are evaluated. It is found that its differential pressure decreases with the flow rate and its efficiency reaches its maximum at Qv = 9.87 L/s with a maximum efficiency of 78.32%. (2) We used the LCS in the analysis of vortices at the top of the impeller blades of a high-speed fuel pump. One of the metrics used to describe the LCS in fluid dynamics is the FTLE. The high FTLE region represents the region with the highest and fastest particle trajectory stretching velocity in the fluid flow. We performed a cross-sectional analysis of the FTLE field on the different height surfaces of the impeller on 25% Plane, 50% Plane, and 75% Plane, respectively. And a quarter turn of the rotor rotation was analyzed as a cycle divided into 8 moments. It is found that on 25% Plane, the vortex at the top of the lobe is not obvious, but there are high FTLE values on the shroud surface. On 50% Plane, the lobe top vortex is relatively obvious and the number of vortices is three. The vortex pattern remains stable with the rotating motion of the rotor. At 75% Plane, the lobe top vortex is more visible and its number of vortices increases to about 5 and the vortex morphology is relatively stable. The FTLE ridges visualize the vortex profile. This is a good guide for fluid dynamics analysis. (3) At the same time, we use the entropy production theory to quantitatively analyze the energy loss, and define the entropy production rate Ep. Through the entropy production analysis of the impeller shroud surface and the suction surface of the pressure surface of the blades at eight moments, we find that the areas of high energy loss are mainly concentrated in the leading and trailing edges of the blades as well as in the shroud surface close to the leading edge of the blades, and the value of the entropy production rate is up to 106 W/m3/K. The areas of high energy loss in the leading edge of the blades as well as the trailing edge show a curved arc, and the energy loss is decreasing as it moves away from the shroud surface and closer to the hub surface. The high energy loss areas at the leading and trailing edges of the blades are curved, and the energy loss decreases as they move away from the shroud surface and closer to the hub surface. The energy loss at the pressure surface of the blade is relatively small, about 5 × 105 W/m3/K, which is mainly concentrated near the leading edge of the blade near the shroud surface and the trailing edge of the blade near the hub surface. Such energy loss corresponds to the vortex LCS at the top of the impeller, and the two mirror each other.

Originality/value

This study focuses on the CFD numerical simulation and analysis of the vortex stacking problem at the top of the impeller of a high-speed fuel pump, mainly using LCS and entropy production theory to visualize the vortex at the top of the impeller as well as quantitatively analyzing the energy loss caused by the vortex at the top of the impeller. By combining the two methods, the two are well verified with each other that the stacking problem of the vortex at the top of the impeller and the location of the energy loss caused by the vortex are consistent with the vortex location. Such a method can reveal the problem of vortex buildup at the top of the lobe well, and provide a novel guidance idea for improving the performance of high-speed fuel pumps.

Details

Engineering Computations, vol. 41 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 23 February 2024

R.S. Ransing

143

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

1 – 10 of 292