Search results

1 – 10 of 82
Article
Publication date: 27 August 2019

Ridha Djebali, Abdallah Jaouabi, Taoufik Naffouti and Said Abboudi

The purpose of this paper is to carry out an in-depth analysis of heat dissipation performance by natural convection phenomenon inside light-emitting diode (LED) lamps containing…

Abstract

Purpose

The purpose of this paper is to carry out an in-depth analysis of heat dissipation performance by natural convection phenomenon inside light-emitting diode (LED) lamps containing hot pin-fins because of its significant industrial applications.

Design/methodology/approach

The problem is assimilated to heat transfer inside air-filled rectangular cavity with various governing parameters appraised in ranges interesting engineering application and scientific research. The lattice Boltzmann method is used to predict the dynamic and thermal behaviors. Effects of monitoring parameters such as Rayleigh number Ra (103-106), fin length (0-0.25) and its position, pin-fins number (1-8), the tilting-angle (0-180°) and cavity aspect ratio Ar (0.25-4) are carried out.

Findings

The rising behaviors of the dynamic and thermal structures and heat transfer rate (Nu), the heatlines distribution and the irreversibility rate are appraised. It was found that the flow is constantly two contra-rotating symmetric cells. The heat transfer is almost doubled by increasing Ra. A lack of cooling performance was identified between Ar = 0.5 and 0.75. The inclination 45° is the most appropriate cooling case. At constant Ra, the maximum stream-function and the global entropy generation remain almost unchanged by increasing the pin number from 1 to 8 and the entropy generation is of thermal origin for low Ra, so that the fluid friction irreversibility becomes dominant for Ra larger than 105.

Research limitations/implications

Improvements may include three-dimensional complex geometries, accounting for thermal radiation, high unit power and turbulence modelling. Such factors effects will be conducted in the future.

Practical implications

The cooling performance/heat dissipation in LED lamps is a key manufacturing factors, which determines the lifetime of the electronic components. The best design and installation give the opportunity to increase further the product shelf-life.

Originality/value

Both cooling performance, irreversibility rate and enclosure configuration (aspect ratio and inclination) are taken into account. This cooling scheme will give a superior operating mode of the hot components in an era where energy harvesting, storage and consumption is met with considerable attention in the worldwide.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square…

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 April 2022

Yuan Ma, Rasul Mohebbi, Zhigang Yang and Mikhail Sheremet

The purpose of this paper is to analyze numerically the nanofluid natural convection inside a square enclosure with two L-shaped heaters using lattice Boltzmann method.

Abstract

Purpose

The purpose of this paper is to analyze numerically the nanofluid natural convection inside a square enclosure with two L-shaped heaters using lattice Boltzmann method.

Design/methodology/approach

An environmentally friendly nanofluid, clove-treated graphene nanoplatelet (CGNP), is used to study the enhancement of heat transfer. Six various heaters configurations are considered and effects of nanoparticle concentration (0–0.1%) and Rayleigh number (10^3–10^6) on streamlines, isothermal lines and heat transfer parameters are studied. The developed computational code has been validated using mesh sensitivity analysis and numerical data of other authors.

Findings

It is observed that in contrast to distilled water, CGNP/water nanofluid is an efficient coolant and the Nusselt number is increased as the nanoparticle concentration and Rayleigh numbers increment. The nanoparticle concentration cannot change the flow pattern inside the enclosure. However, the Rayleigh number and heaters configuration can change the flow pattern significantly. Several heaters configurations (Cases 1–4) related to the symmetry of geometrical shape and corresponding boundary conditions, illustrate the symmetry of streamlines and isotherms about the vertical line (X = 0.5). The formation of vortices inside the enclosure is affected by the raising heat plume above the heaters. Moreover, at different Rayleigh numbers, the relative magnitude of average Nu for various cases is different. At Ra = 103, the energy transport characteristic depends on the relative location of heaters and cold walls, and the order of average Nusselt number is Case 3 ˜ Case 4 ˜ Case 6 > Case 1 ˜ Case 2 ˜ Case 5. However, at Ra = 106, an influence of thermal convection mechanism on heat transfer is significant and the ranking of average Nusselt number is Case 1 ˜ Case 4 > Case 5 > Case 6 > Case 2 > Case 3.

Originality/value

The originality of the research lies in both the study of thermogravitational convection in a closed chamber with two L-shaped heaters, and the analysis of the influence of control parameters for an environmentally friendly nanoliquid on electronics cooling process.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 September 2021

Soufien Belhaj and Brahim Ben-Beya

This study aims to analyze entropy generation and magnetohydrodynamic (MHD) natural convection of hybrid nanofluid in a square cavity, with a heated elliptical block placed at the…

Abstract

Purpose

This study aims to analyze entropy generation and magnetohydrodynamic (MHD) natural convection of hybrid nanofluid in a square cavity, with a heated elliptical block placed at the center, in presence of a periodic-variable magnetic field.

Design/methodology/approach

In this paper, simulations were performed with a FORTRAN home code. The numerical methodology used to solve Navier–Stokes, energy and entropy generation equations with corresponding boundary conditions, is essentially based on the finite volume method and full multigrid acceleration.

Findings

The cavity is filled with Ag–Tio2/Water hybrid nanofluid. The main objective of this investigation is to predict the effects of body’s size (6 cases), type of applied magnetic field (variable or uniform), the non-dimensional period number of the variable magnetic field (VMF) (0.2 ≤ Λ ≤ 0.8), the inclination angle of the VMF (0 ≤ χ ≤ 90), Rayleigh number (5 × 103 ≤ Ra ≥ 105) and Hartmann number (5 ≤ Ha ≥ 100) on thermal performance, heat transfer rate, entropy generation and flow patterns.

Originality/value

To the authors’ best knowledge, this paper is the first numerical investigation deals with the entropy generation and natural convection of hybrid nanofluid in a two-dimensional cavity, with specific thermal boundary conditions, containing an elliptical block under periodic-variable magnetic field. Different combinations between flow-governing parameters were made to find optimal thermal performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 December 2020

Sivaraj Chinnasamy, S. Priyadharsini and Mikhail Sheremet

This study/paper aims to deal with thermal convection and entropy production of a ferrofluid in an enclosure having an isothermally warmed solid body placed inside. It should be…

Abstract

Purpose

This study/paper aims to deal with thermal convection and entropy production of a ferrofluid in an enclosure having an isothermally warmed solid body placed inside. It should be noted that this research deals with a development of passive cooling system for the electronic devices.

Design/methodology/approach

The domain of interest is a square chamber of size L including a rectangular solid block of sizes l1 and l2. Thermal convection of ferrofluid (water–Fe3O4 nanosuspension) is analyzed within this enclosure. The solid body is considered to be isothermal with temperature Th and also its area is L2/9. The vertical borders are cold with temperature Tc and the horizontal boundaries are adiabatic. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the semi-implicit method for pressure-linked equations algorithm on a uniformly staggered mesh. The influence of nanoparticles volume fraction, aspect ratio of the solid block and an irreversibility ratio on energy transport and flow patterns are examined for the Rayleigh number Ra = 107.

Findings

The results show that the nanoparticles concentration augments the thermal transmission and the entropy production increases also, while the augmentation of temperature difference results in a diminution of entropy production. Finally, lower aspect ratio has the significant impact on heat transfer, isotherms, streamlines and entropy.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze convective energy transport and entropy generation in a chamber with internal block. To the best of the authors’ knowledge, the effects of irreversibility ratio are scrutinized for the first time. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer and entropy production in enclosures with internal isothermal blocks, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, electronics, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 May 2023

Ahmad Reza Roozbehi, Mohammad Zabetian Targhi, Mohammad Mahdi Heyhat and Ala Khatibi

This numerical study aims to investigate the modification of the hexagonal pin fin geometry to enhance both the thermal and hydraulic performance of the copper micropin fin heat

Abstract

Purpose

This numerical study aims to investigate the modification of the hexagonal pin fin geometry to enhance both the thermal and hydraulic performance of the copper micropin fin heat sink with single-phase water coolant in a laminar regime. The heat sink performance evaluation criteria have been investigated for the parametric effects of vertex angle θ (10–120) and relative length (RL) (0.25–9) of hexagonal pin fins.

Design/methodology/approach

To carry out research and reduce the computational cost, only one heat sink unit is simulated and analyzed using periodic boundary conditions on the side walls and includes a hexagonal pin fin and half channel on both sides to reflect the structural characteristics completely. The governing equations are also solved using finite volume method.

Findings

The results reveal that θ = 60 and RL = 1 yield the optimum thermal performance and heat sink performance is significantly influenced by the vertex angle and RL. The modified hexagon geometry improves fluid flow behavior by reducing the volume of the recirculation region behind the pin fin, preventing its effects on the downstream pin fins and restricting the thermal boundary layer development on its straight side. At Re = 1,000, the modified geometry enhances the average Nusselt number by 24.46% and the thermal performance factor by 23.89%, demonstrating the potential of modified hexagonal pin fins to enhance micropin fin heat sink performance.

Originality/value

Prior studies suggest using the pin fins with a regular hexagonal cross-section to obtain better thermal performance. However, this comes with a higher pressure drop penalty. The modification of the hexagonal pin fin geometry has been investigated in this numerical study to enhance both the thermal and hydraulic performance of the micropin fin heat sink. Because little attention has been paid to the modification of the regular hexagonal pin fins, as a geometry inspired by natural honeycomb structures, its design optimization is relatively scarce, and a gap was felt in this field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 March 2023

Amir Rezazad Bari, Mohammad Zabetian Targhi and Mohammad Mahdi Heyhat

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been…

Abstract

Purpose

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been studied, such as secondary flow formation and flow-wall interaction.

Design/methodology/approach

In this study, the effect of hybrid arrangements of elliptical and hexagonal pin-fins with different distribution percentages on flow characteristics and performance evaluation criteria in laminar flow was investigated. Ansys-Fluent software solves the governing equations using the finite volume method. Also, the accuracy of obtained results was compared with the experimental results of other similar papers.

Findings

The results of this study highlighted that hybrid arrangements show higher overall performance than single pin-fin patterns. Among the hybrid arrangements, case 3 has the highest values of performance evaluation criteria, that is, 1.84 in Re = 900. The results revealed that, with the instantaneous change in the pattern from elliptic to hexagonal, the secondary flow increases in the cross-sectional area of the channels, and the maximum velocity in the cross-section of the channel increases. The important advantages of case 3 are its highest overall performance and a lower chip surface temperature of up to about 2% than other hybrid patterns.

Originality/value

Prior research has shown that in the single pin-fin pattern, the cooling power at the end of the heat sink decreases with increasing fluid temperature. Also, a review of previous studies showed that existing papers had not investigated hybrid pin-fin patterns by considering the effect of changing distribution percentages on overall performance, which is the aim of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Lei Luo, Chenglong Wang, Lei Wang, Bengt Ake Sunden and Songtao Wang

The dimple is adopted into a pin fin wedge duct which is widely used in modern gas turbine vane cooling structure trailing edge region. The purpose of this paper is to study the…

Abstract

Purpose

The dimple is adopted into a pin fin wedge duct which is widely used in modern gas turbine vane cooling structure trailing edge region. The purpose of this paper is to study the effects of dimple depth and duct converging angle on the endwall heat transfer and friction factor in this pin fin wedge duct.

Design/methodology/approach

The study is carried out by using the numerical simulations. The diameter of dimples is the same as the pin fin diameter with an inline manner arrangement in relation to the pin fin. The ratio between dimple depth and dimple diameter is varied from 0 to 0.3 and the converging angle is ranging from 0° to 12.7°. The Reynolds number is between 10,000 and 50,000. Results of the endwall Nusselt number, friction factor, and flow structures are included. For convenience of comparison, the pin fin wedge duct with a converging angle of 12.7° without dimples is considered as the baseline.

Findings

It is found that the dimples can effectively enhance the endwall heat transfer due to the impingement on the dimple surface, reattachment downstream the dimple and recirculation in front of the pin fin leading edge. By increasing the converging angle, the heat transfer is also increased but with a large friction factor penalty. In addition, the heat transfer enhancement for deep depth cases is 1.57 times higher than that of the low depth case. The thermal performance indicates that the intensity of heat transfer enhancement depends upon the dimple depth and converging angle.

Originality/value

It suggests that the endwall heat transfer in a pin fin wedge duct can be increase by the adoption of dimples. The optimal dimple relative depth is 0.2 with low friction factor and high heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 July 2019

Safeer Hussain, Jian Liu, Lei Wang and Bengt Ake Sunden

The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs).

Abstract

Purpose

The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs).

Design/methodology/approach

This numerical study presents the enhancement of thermal performance in the trailing part of a gas turbine blade. In the trailing part, generally, pin fins are used either in staggered or in-line arrangements to enhance the heat transfer. In this study, based on the idea from heat exchangers, pin fins are combined with VGs. A pair of VGs is embedded in the boundary layer upstream of each pin fin in the first row of the pin fin array having an in-line configuration. The effects of the VG angle relative to the streamwise direction and streamwise distance between the pin fin and VGs are investigated at various Reynolds numbers.

Findings

The results indicated that the endwall heat transfer is enhanced with the addition of VGs and the heat transfer from the surfaces of the pin fins. The level of heat transfer enhancement compared to the case without VGs is more significant at high Reynolds number. The surfaces of the VGs also show a significant amount of heat transfer. Study of the angle of the attack suggested that a high angle of attack is more appropriate for pin fin cooling enhancement whereas an intermediate gap between the VGs and pin fins shows considerable improvement of thermal performance compared to the small and large gaps. The phenomenon of heat transfer augmentation with the VGs is demonstrated by the flow field. It shows that the enhancement of heat transfer is governed by the mixing of the flow as a result of the interaction of vortices generated by the VGs and pin fins.

Originality/value

VGs are used to disturb the thermal boundary layer. It shows that heat transfer is augmented as a result of the interaction of vortices associated with VGs and pin fins.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Lei Luo, Wei Du, Songtao Wang, Weilong Wu and Xinghong Zhang

The purpose of this paper is to investigate the optimal geometry parameters in a dimple/protrusion-pin finned channel with high thermal performance.

552

Abstract

Purpose

The purpose of this paper is to investigate the optimal geometry parameters in a dimple/protrusion-pin finned channel with high thermal performance.

Design/methodology/approach

The BSL turbulence model is used to calculate the flow structure and heat transfer in a dimple/protrusion-pin finned channel. The optimization algorithm is set as Non-dominated Sorting Genetic Algorithm II (NSGA-II). The high Nusselt number and low friction factor are chosen as the optimization objectives. The pin fin diameter, dimple/protrusion diameter, dimple/protrusion location and dimple/protrusion depth are applied as the optimization variables. An in-house code is used to generate the geometry model and mesh. The commercial software Isight is used to perform the optimization process.

Findings

The results show that the Nusselt number and friction factor are sensitive to the geometry parameters. In a pin finned channel with a dimple, the Nusselt number is high at the rear part of the dimple, while it is low at the upstream of the dimple. A high dissipative function is found near the pin fin. In the protrusion channel, the Nusselt number is high at the leading edge of the protrusion. In addition, the protrusion induces a high pressure drop compared to the dimpled channel.

Originality/value

The originality of this paper is to optimize the geometry parameters in a pin finned channel with dimple/protrusion. This is good application for the heat transfer enhancement at the trailing side for the gas turbine.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 82