Search results

1 – 10 of 10
Article
Publication date: 1 June 2015

Kazem Esmailpour, Behnam Bozorgmehr, Seyed Mostafa Hosseinalipour and Arun S. Mujumdar

The purpose of this paper is to examine entropy generation rate in the flow and temperature field due pulsed impinging jet on to a flat plate. Heat transfer of pulsed impinging…

Abstract

Purpose

The purpose of this paper is to examine entropy generation rate in the flow and temperature field due pulsed impinging jet on to a flat plate. Heat transfer of pulsed impinging jets has been investigated by many researchers. Entropy generation is one of the parameters related to the second law of thermodynamics which must be analyzed in processes with heat transfer and fluid flow in order to design efficient systems. Effect of velocity profile parameters and various nozzle to plate distances on viscous and thermal entropy generation are investigated.

Design/methodology/approach

In this study, the flow and temperature field of a pulsed turbulent impinging jet are simulated numerically by the finite volume method with appropriate boundary conditions. Then, flow and temperature results are used to calculate the rate of entropy generation due to heat transfer and viscous dissipation.

Findings

Results show that maximum viscous and thermal entropy generation occurs in the lowest nozzle to plate distance and entropy generation decreases as the nozzle to plate distance increases. Entropy generation in the two early phase of a period in the most frequencies is more than steady state whereas a completely opposite behavior happens in the two latter phase. Increase in the pulsation frequency and amplitude leads to enhancement in entropy generation because of larger temperature and velocity gradients. This phenomenon appears second and even third peaks in entropy generation plots in higher pulsation frequency and amplitude.

Research limitations/implications

The predictions may be extended to include various pulsation signal shape, multiple jet configuration, the radiation effect and phase difference between jets.

Practical implications

The results of this paper are a valuable source of information for active control of transport phenomena in impinging jet configurations which is used in different industrial applications such as cooling, heating and drying processes.

Originality/value

In this paper the entropy generation of pulsed impinging jet was studied for the first time and a comprehensive discussion on numerical results is provided.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 August 2021

Zahra Sarbazi and Faramarz Hormozi

This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin…

Abstract

Purpose

This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin cross-sections. The effect of the fin cross-section including semi-circular, rectangular and quadrant in two directions of flat and curved, and channel substrate materials of steel, aluminum, copper and titanium were examined. Finally, the analysis of thermal and frictional entropy generation in different channels is performed.

Design/methodology/approach

According to the numerical results, the highest heat transfer coefficients belong to the rectangular, quadrant 2, quadrant 1 and semi-circular fins compared to the channel without fin is 38.65%, 29.94%, 27.45% and 17.1%, respectively. Also, the highest performance evaluation criteria belong to the rectangular and quadrant 2 fins, which have 1.35 and 1.29, respectively. Based on the thermal conductivity of the substrate material, the best material is copper. According to the results of entropy analysis, the reduction of thermal irreversibility of the channel with rectangular, quadrant 1, quadrant 2 and semi-circular compared to non-finned channel is equal to 72%, 57%, 63% and 48%, respectively.

Findings

The rectangular and quadrant 2 fins are the best fins and the copper substrate material is the best material to reduce the entropy generation.

Originality/value

The silicon oxide/water nanofluid flow in the heat sink miniature channel with various fin shapes and the curvature angle against the fluid flow was simulated to increase the heat transfer performance. The whole test section is simulated in three-dimensional. Different channel materials have been investigated to find the best channel substrate material.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 May 2021

Mojtaba Sepehrnia, Hossein Khorasanizadeh and Mohammad Behshad Shafii

This paper aims to study the thermal and thermo-hydraulic performances of ferro-nanofluid flow in a three-dimensional trapezoidal microchannel heat sink (TMCHS) under uniform heat…

Abstract

Purpose

This paper aims to study the thermal and thermo-hydraulic performances of ferro-nanofluid flow in a three-dimensional trapezoidal microchannel heat sink (TMCHS) under uniform heat flux and magnetic fields.

Design/methodology/approach

To investigate the effect of direction of Lorentz force the magnetic field has been applied: transversely in the x direction (Case I);transversely in the y direction (Case II); and parallel in the z direction (Case III). The three-dimensional governing equations with the associated boundary conditions for ferro-nanofluid flow and heat transfer have been solved by using an element-based finite volume method. The coupled algorithm has been used to solve the velocity and pressure fields. The convergence is reached when the accuracy of solutions attains 10–6 for the continuity and momentum equations and 10–9 for the energy equation.

Findings

According to thermal indicators the Case III has the best performance, but according to performance evaluation criterion (PEC) the Case II is the best. The simulation results show by increasing the Hartmann number from 0 to 12, there is an increase for PEC between 845.01% and 2997.39%, for thermal resistance between 155.91% and 262.35% and ratio of the maximum electronic chip temperature difference to heat flux between 155.16% and 289.59%. Also, the best thermo-hydraulic performance occurs at Hartmann number of 12, pressure drop of 10 kPa and volume fraction of 2%.

Research limitations/implications

The embedded electronic chip on the base plate generates heat flux of 60 kW/m2. Simulations have been performed for ferro-nanofluid with volume fractions of 1%, 2% and 3%, pressure drops of 10, 20 and 30 kPa and Hartmann numbers of 0, 3, 6, 9 and 12.

Practical implications

The authors obtained interesting results, which can be used as a design tool for magnetohydrodynamics micro pumps, microelectronic devices, micro heat exchanger and micro scale cooling systems.

Originality/value

Review of the literature indicated that there has been no study on the effects of magnetic field on thermal and thermo-hydraulic performances of ferro-nanofluid flow in a TMCHS, so far. In this three dimensional study, flow of ferro-nanofluid through a trapezoidal heat sink with five trapezoidal microchannels has been considered. In all of previous studies, in which the effect of magnetic field has been investigated, the magnetic field has been applied only in one direction. So as another innovation of the present research, the effect of applying magnetic field direction (transverse and parallel) on thermo-hydraulic behavior of TMCHS is investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 December 2018

Ahad Abedini, Saeed Emadoddin and Taher Armaghani

This study aims to investigate the numerical analysis of mixed convection within the horizontal annulus in the presence of water-based fluid with nanoparticles of aluminum oxide…

Abstract

Purpose

This study aims to investigate the numerical analysis of mixed convection within the horizontal annulus in the presence of water-based fluid with nanoparticles of aluminum oxide, copper, silver and titanium oxide. Numerical solution is performed using a finite-volume method based on the SIMPLE algorithm, and the discretization of the equations is generally of the second order. Inner and outer cylinders have a constant temperature, and the inner cylinder temperature is higher than the outer one. The two cylinders can be rotated in both directions at a constant angular velocity. The effect of parameters such as Rayleigh, Richardson, Reynolds and the volume fraction of nanoparticles on heat transfer and flow pattern are investigated. The results show that the heat transfer rate increases with the increase of the Rayleigh number, as well as by increasing the volume fraction of the nanoparticles, the heat transfer rate increases, and this increase is about 8.25 per cent for 5 per cent volumetric fraction. Rotation of the cylinders reduces the overall heat transfer. Different directions of rotation have a great influence on the flow pattern and isotherms, and ultimately on heat transfer. The addition of nanoparticles does not have much effect on the flow pattern and isotherms, but it is quantitatively effective. The extracted results are in good agreement with previous works.

Design/methodology/approach

Studying mixed convection heat transfer in the horizontal annulus in the presence of a water-based fluid with aluminum oxide, copper, silver and titanium oxide nanoparticles is carried out quantitatively using a finite-volume method based on the SIMPLE algorithm.

Findings

Increasing the Rayleigh number increases the Nusselt number. Increasing the Richardson number increases heat transfer. Adding nanoparticles does not have much effect on the flow pattern but is effective quantitatively on heat transfer parameters. The addition of nanoparticles sometimes increases the heat transfer rate by about 8.25 per cent. In constant Rayleigh numbers, increasing the Reynolds number reduces heat transfer. The Rayleigh and Reynolds numbers greatly affect the isotherms and streamlines. In addition to the thermal conductivity of nanoparticles, the thermo-physical properties of nanoparticles has great effect in the formation of isotherms and streamlines and ultimately heat transfer.

Originality/value

Studying the effect of different direction of rotation on the isotherms and streamlines, as well as the comparison of different nanoparticles on mixed convection heat transfer in annulus.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1990

Sushil

A systems perspective of waste management allows an integratedapproach not only to the five basic functional elements of wastemanagement itself (generation, reduction, collection…

3893

Abstract

A systems perspective of waste management allows an integrated approach not only to the five basic functional elements of waste management itself (generation, reduction, collection, recycling, disposal), but to the problems arising at the interfaces with the management of energy, nature conservation, environmental protection, economic factors like unemployment and productivity, etc. This monograph separately describes present practices and the problems to be solved in each of the functional areas of waste management and at the important interfaces. Strategies for more efficient control are then proposed from a systems perspective. Systematic and objective means of solving problems become possible leading to optimal management and a positive contribution to economic development, not least through resource conservation. India is the particular context within which waste generation and management are discussed. In considering waste disposal techniques, special attention is given to sewage and radioactive wastes.

Details

Industrial Management & Data Systems, vol. 90 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 17 October 2018

Mohammad M. Hosseini and Asghar B. Rahimi

Reducing discrepancy between energy demand and supply has been a controversial issue among researchers. Thermal energy storage is a technique to decrease this difference to…

Abstract

Purpose

Reducing discrepancy between energy demand and supply has been a controversial issue among researchers. Thermal energy storage is a technique to decrease this difference to increase the thermal efficiency of systems. Latent heat thermal energy storage has interested many researchers over the past few decades because of its high thermal energy density and constant operating temperature. The purpose of this paper is to provide a numerical study of the solidification process in a triplex tube heat exchanger containing phase change material (PCM) RT82.

Design/methodology/approach

A two-dimensional transient model was generated using finite volume method and regarding enthalpy-porosity technique. After that, a detailed and systematic approach has been presented to modify longitudinal fins’ configuration to enhance heat transfer rate in PCMs and reducing solidification time. The numerical results of this study have been validated by reference experimental results.

Findings

The ultimate model reduced solidification time up to 21.1 per cent of the Reference model which is a substantial improvement. Moreover, after testing different arrangements of rectangular fins and studying the flow pattern of liquid PCM during solidification, two general criteria was introduced so that engineers can reach the highest rate of heat transfer for a specified value of total surface area of fins. Finally, the effect of considering natural convection during solidification was studied, and the results showed that disregarding natural convection slows down the solidification process remarkably in comparison with experimental results and in fact, this assumption generates non-real estimation of solidification process.

Originality/value

The arrangement of the fins to have the best possible solidification time is the novelty in this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 May 2011

S. Askari, M.H. Shojaeefard and K. Goudarzi

The purpose of this paper is to carry out a comprehensive study of compressible flow over double wedge and biconvex airfoils using computational fluid dynamics (CFD) and three…

1248

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive study of compressible flow over double wedge and biconvex airfoils using computational fluid dynamics (CFD) and three analytical models including shock and expansion wave theory, Busemann's second‐order linearized approximation and characteristic method (CHM).

Design/methodology/approach

Flow over double‐wedge and biconvex airfoils was investigated by the CFD technique using the Spalart‐Allmaras turbulence model for computation of the Reynolds stresses. Flow was considered compressible, two dimensional and steady. The no slip condition was applied at walls and the Sutherland law was used to calculate molecular viscosity as a function of static temperature. First‐order upwind discretization scheme was used for the convection terms. Finite‐volume method was used for the entire solution domain meshed by quadratic computational cells. Busemann's theory, shock and expansion wave technique and CHM were the analytical methods used in this work.

Findings

Static pressure, static temperature and aerodynamic coefficients of the airfoils were calculated at various angles of attack. In addition, aerodynamic coefficients of the double‐wedge airfoil were obtained at various free stream Mach numbers and thickness ratios of the airfoil. Static pressure and aerodynamic coefficients obtained from the analytical and numerical methods were in excellent agreement with average error of 1.62 percent. Variation of the static pressure normal to the walls was negligible in the numerical simulation as well as the analytical solutions. Analytical static temperature far from the walls was consistent with the numerical values with average error of 3.40 percent. However, it was not comparable to the numerical temperature at the solid walls. Therefore, analytical solutions give accurate prediction of the static pressure and the aerodynamic coefficients, however, for the static temperature; they are only reliable far from the solid surfaces. Accuracy of the analytical aerodynamic coefficients is because of accurate prediction of the static pressure which is not considerably influenced by the boundary layer. Discrepancies between analytical and numerical temperatures near the walls are because of dependency of temperature on the boundary layer and viscous heating. Low‐speed flow near walls causes transformation of the kinetic energy of the free stream into enthalpy that leads to high temperature on the solid walls; which is neglected in the analytical solutions.

Originality/value

This paper is useful for researchers in the area of external compressible flows. This work is original.

Details

Engineering Computations, vol. 28 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2024

Aşkin Özdağoğlu, Eda Acar, Mücella Güner and Ayşegül Çetmeli Bakadur

The textile industry harms the environment at every stage of production, from the acquisition of raw materials to the disposal of finished products. It is very important for the…

Abstract

Purpose

The textile industry harms the environment at every stage of production, from the acquisition of raw materials to the disposal of finished products. It is very important for the textile industry to adapt to the basic policies on environmental sensitivity and sustainability to keep up with the transformation in production processes and the rapid changes occurring around the world in order to exist in global competition. Within the scope of sustainable development goals, it is of great importance to measure and evaluate indicators of all processes of the sector. This paper aims to present application of multi-criteria decision making (MCDM) methods for the assessment of sustainable development in textile industry.

Design/methodology/approach

The data of a multinational clothing company’s four-year sustainability performance between 2018 and 2021 were evaluated under 22 sustainability parameters determined using two new MCDM techniques, namely the combined consensus solution method and multi-attribute ideal real comparative analysis. In determining the criteria, priority key indicators were determined by taking into account the sector’s relationship with the environment, raw material consumption and social adequacy.

Findings

According to the application results of both methods, the year 2021 shows the best performance. It has been seen that the sustainability performance of the Inditex group has increased over the years and the results of the applied models support each other. It can be suggested that the proposed approach be applied to evaluate the progress in the textile sector with the relevant data on a particular company or on a macro scale.

Originality/value

This study makes an important contribution to the field in terms of the fact that the methods used are recent and have no application in the field of textiles. It allows the evaluation of different sustainability criteria together using a single method. It is very important to share data on sustainability indicators with customers, employees, suppliers, investors, partner organizations and society and evaluate performance. Analyzing sustainability performance on the basis of annual reports is important in terms of identifying good practices, sharing them with the community and setting an example. In addition, using scientific methods in the evaluation of the sustainability report data published by companies regularly provides significant feedback for policymakers and academics.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 22 August 2023

Mohammadsadegh Pahlavanzadeh, Krzysztof Rusin and Wlodzimierz Wróblewski

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of…

Abstract

Purpose

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of the flow through the gap, which forms a minichannel with variable cross sections and rotating walls, makes it a complex problem and, therefore, worth discussing in more detail.

Design/methodology/approach

Two roughness models were examined, the first one was based on the wall function modification by application of the shift in the dimensionless velocity profile, and the second one was based on the correction of turbulence parameters at the wall, proposed by Aupoix. Due to the lack of data to validate that specific case, the approach to deal with was selected after a systematic study of reported test cases. It started with a zero-pressure-gradient boundary layer in the flow over a flat plate, continued with flow through minichannels with stationary walls, and finally, focused on the flow between corotating discs, pertaining each time to smooth and rough surfaces.

Findings

The limitations of the roughness models were highlighted, which make the models not reliable in the application to minichannel flows. It concerns turbulence models, near-wall discretization and roughness approaches. Aupoix’s method to account for roughness was selected, and the influence of minichannel height, mass flow rate, fluid properties and roughness height on the velocity profile between corotating discs in both smooth and rough cases was discussed.

Originality/value

The originality of this study is the evaluation and validation of different methods to account for the roughness in rotating mini channels, where the protrusions can cover a substantial part of the channel. Flow behavior and performance of different turbulence models were analyzed as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2023

Qing Liu, Yun Feng and Mengxia Xu

This paper aims to investigate whether the establishment of commodity futures can effectively hedge systemic risk in the spot network, given the context of financialization in the…

Abstract

Purpose

This paper aims to investigate whether the establishment of commodity futures can effectively hedge systemic risk in the spot network, given the context of financialization in the commodity futures market.

Design/methodology/approach

Utilizing industry association data from the Chinese commodity market, the authors identify systemically important commodities based on their importance in the production process using multiple graph analysis methods. Then the authors analyze the effect of listing futures on the systemic risk in the spot market with the staggered difference-in-differences (DID) method.

Findings

The findings suggest that futures contracts help reduce systemic risks in the underlying spot network. Systemic risk for a commodity will decrease by approximately 5.7% with the introduction of each corresponding futures contract, since the hedging function of futures reduces the timing behavior of firms in the spot market. Establishing futures contracts for upstream commodities lowers systemic risks for downstream commodities. Energy commodities, such as crude oil and coal, have higher systemic importance, with the energy sector dominating systemic importance, while some chemical commodities also have considerable systemic importance. Meanwhile, the shortest transmission path for risk propagation is composed of the energy industry, chemical industry, agriculture/metal industry and final products.

Originality/value

The paper provides the following policy insights: (1) The role of futures contracts is still positive, and future contracts should be established upstream and at more systemically important nodes in the spot production chain. (2) More attention should be paid to the chemical industry chain, as some chemical commodities are systemically important but do not have corresponding futures contracts. (3) The risk source of the commodity spot market network is the energy industry, and therefore, energy-related commodities should continue to be closely monitored.

Details

China Finance Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1398

Keywords

1 – 10 of 10