Search results

1 – 10 of over 5000
Article
Publication date: 17 September 2021

Lorenzo Fiorineschi, Tommaso Bacci, Francesco Saverio Saverio Frillici, Simone Cubeda, Yary Volpe, Federico Rotini, Monica Carfagni and Bruno Facchini

This paper aims to present the design of a particular non-reactive test rig for combustion swirlers and first stage turbine nozzles. The test rig is required for important…

Abstract

Purpose

This paper aims to present the design of a particular non-reactive test rig for combustion swirlers and first stage turbine nozzles. The test rig is required for important experimental activities aimed at the optimization of a specific class of gas turbines.

Design/methodology/approach

A multi-disciplinary team performed the design process by following a tailored design approach, which has been developed for the specific case. The design outcomes allowed to build a fully functional test rig to be introduced in a test cell and then to perform preliminary experiments about the fluid dynamic behaviour of the turbine elements.

Findings

The followed design approach allowed to efficiently perform the task, by supporting the information exchange among the different subjects involved in both the conceptual and the embodiment design of the test rig. Additionally, the performed experiments allowed to achieve a final configuration that makes the test rig a valuable test case for combustor-turbine interaction studies.

Research limitations/implications

The study described in this paper is focused on the design of a specific test rig, used for first validation tests. However, the achieved results (both in terms of design and test) constitutes the underpinning of the in-depth investigations to be performed in the next steps of the experimental campaign.

Originality/value

To the best of the authors’ knowledge, the present paper is the first one that comprehensively describes the design activity of an experimental test rig for turbine application, also providing indications about the specific methodological procedure used to manage the process.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 June 2020

Lorenzo Fiorineschi, Susanna Papini, Luca Pugi, Andrea Rindi and Federico Rotini

The purpose of this study is to identify an innovative solution for the power transmission gearbox of concrete mixers, according to the specifications provided by the company.

Abstract

Purpose

The purpose of this study is to identify an innovative solution for the power transmission gearbox of concrete mixers, according to the specifications provided by the company.

Design/methodology/approach

A tailored systematic design approach (inspired to the German systematic framework) has been adopted to comprehensively gather the company specifications and perform in-depth design space explorations. Subsequently, an iterative embodiment design approach has been followed to identify the size of the components for the preferred concept, by using acknowledged mechanical design procedures and finite element analysis tools.

Findings

An innovative cycloidal gearbox has been developed, by merging the kinematics underpinning the classical cycloidal drives and the Wolfrom planetary gearbox. The resulting concept provides high reduction rates with a very high overload capacity.

Research limitations/implications

The main limitation of the studies is the absence of in-depth evaluations usually performed in the detail design phase. However, this limitation is a direct consequence of the company specifications, which only asked to find a preferred concept and to perform preliminary evaluations. Accordingly, the subsequent design optimization are intended to be performed by the company’s staff.

Originality/value

The present paper shows an original design approach, opportunely tailored to the design of innovative gearboxes. It can be conveniently adapted and reused by designers involved in similar tasks. Moreover, the designed cycloidal gearbox paves the way for important innovations in the field of concrete mixers, allowing to design more robust and compact devices.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 30 July 2021

Lorenzo Fiorineschi, Luca Pugi and Federico Rotini

The purpose of this paper is to present an alternative solution for press-fit technology processes, which could improve the precision of the positioning movements and the…

Abstract

Purpose

The purpose of this paper is to present an alternative solution for press-fit technology processes, which could improve the precision of the positioning movements and the stiffness of the structural elements.

Design/methodology/approach

A concept is presented and the related kinematics is described. Then, preliminary embodiment evaluations have been performed in terms of kinematics, force control and load distribution on the main structural elements.

Findings

Thanks to the additional leg, the proposed solution allows a preload that is capable of compensating the backlash of joints. The particular structure with four extendible legs and eight cardan joints ensures the parallelism between the ground and the plate holding the end effector, without any need of additional controls. However, it implies that the legs are not subjected to pure tension–compression stresses.

Research limitations/implications

This work is focused on the conceptual phase of the design process, with only preliminary embodiment analysis that paves the way for subsequent and more detailed design steps. Especially concerning the actual stiffness of the system, comprehensive evaluations could be performed only after the identification of the particular parts/devices used to implement the main functional elements.

Originality/value

To the best of the authors’ knowledge, this is the first research work that comprehensively describes and analyzes the considered kinematics, within a real industrial application context.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 21 July 2022

Lorenzo Fiorineschi, Leonardo Conti, Giuseppe Rossi and Federico Rotini

This paper aims to present the application of a tailored systematic engineering design procedure to the concept design of a small production plant for compostable packaging made…

1014

Abstract

Purpose

This paper aims to present the application of a tailored systematic engineering design procedure to the concept design of a small production plant for compostable packaging made by straw fibres and bioplastic. In particular, the obtained boxes are intended to be used for wine bottles.

Design/methodology/approach

A systematic procedure has been adopted, which underpins on a comprehensive analysis of the design requirements and the function modelling of the process. By considering well-known models of the engineering design process, the work focuses on the early design stages that precede the embodiment design of the whole components of the plant.

Findings

The followed design approach allowed to preliminarily evaluate different alternatives of the process from a functional point of view, thus allowing to identify the preferred conceptual process solution. Based on the identified functional sequence, a first evaluation of the potential productivity and the required human resources has been performed.

Research limitations/implications

The procedure shown in this work has been applied only for the considered case of compostable packaging, and other applications are needed to optimize it. Nevertheless, the adopted systematic approach can be adapted for any context where it is necessary to conceive a new production plant for artefacts made by innovative materials.

Originality/value

The work presented in this paper represents one of the few practical examples available in the literature where systematic conceptual design procedures are presented. More specifically, to the best of the authors’ knowledge, this is the very first application of systematic design methods to compostable packaging production.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 27 February 2020

Wei Liu, Zicheng Zhu and Songhe Ye

The decision-making for additive manufacturing (AM) process selection is typically applied in the end of the product design stages based upon an already finished design. However…

Abstract

Purpose

The decision-making for additive manufacturing (AM) process selection is typically applied in the end of the product design stages based upon an already finished design. However, due to unique characteristics of AM processes, the part needs to be designed for the specific AM process. This requires potentially feasible AM techniques to be identified in early design stages. This paper aims to develop such a decision-making methodology that can seamlessly be integrated in the product design stages to facilitate AM process selection and assist product/part design.

Design/methodology/approach

The decision-making methodology consists of four elements, namely, initial screening, technical evaluation and selection of feasible AM processes, re-evaluation of the feasible process and production machine selection. Prior to the design phase, the methodology determines whether AM production is suitable based on the given design requirements. As the design progresses, a more accurate process selection in terms of technical and economic viability is performed using the analytic hierarchy process technique. Features that would cause potential manufacturability issues and increased production costs will be identified and modified. Finally, a production machine that is best suited for the finished product design is identified.

Findings

The methodology was found to be able to facilitate the design process by enabling designers to identify appropriate AM technique and production machine, which was demonstrated in the case study.

Originality/value

This study addresses the gap between the isolated product design and process selection stages by developing the decision-making methodology that can be integrated in product design stages.

Article
Publication date: 6 February 2017

Andre Diogo Moscheto, Carlos Cziulik, Simão Marcon Junior and Marcos Sulevis

The purpose of this paper is to provide a new approach involving guidelines and supporting techniques that guarantees all needed space for appropriate product maintenance.

Abstract

Purpose

The purpose of this paper is to provide a new approach involving guidelines and supporting techniques that guarantees all needed space for appropriate product maintenance.

Design/methodology/approach

The approach is based on two major areas: field survey to understand how maintainability parameter is applied and converge theory and practice into a systematic space claim method using computer-aided design (CAD) systems to assure proper maintenance procedures at design stages.

Findings

Case studies from a truck industry conducted following the proposed approach contrast the savings that can be achieved by using a proper space claim for aftermarket needs against an unsuitable level of participation by maintenance personnel during the design development.

Research limitations/implications

This approach is highly dependent on maintenance experts with suitable skills on CAD systems.

Practical implications

Products developed according to the approach envisaged can result in following aspects: lower repair time, better maintenance procedures on key components, easier preventive maintenance, less need for special tools, more ergonomic design, better communication between design and service engineers, simplicity and less complex training.

Social implications

Further research on maintainability will provide new information on how to apply this parameter on product development process (PDP), so design teams can better understand and address this relevant issue. The proposed method has been introduced in the PDP of a major multinational automotive company.

Originality/value

A new process is presented, considering the protection of needed spaces for maintenance procedures throughout the PDP, diverging to other studies that only propose analysis addressing maintainability at singular point in time during the product development. In just one case study presented, savings of US$1.3m were achieved by applying this space claim approach.

Details

Assembly Automation, vol. 37 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 March 2019

Joscha Krieglsteiner, Peter Horst and Carsten Schmidt

A novel development process aims at finding solutions for lightweight stiffened shell structures and their efficient production. To respect the strong interdependency of…

Abstract

Purpose

A novel development process aims at finding solutions for lightweight stiffened shell structures and their efficient production. To respect the strong interdependency of structural design and production planning, particularly observed for composite structures, it is of high interest to start considering production effects in early development phases. This integrated approach requires an integrated representation of structure and production. The purpose of this study is to investigate the scope of relevant data and to find a structure for its representation.

Design/methodology/approach

The development task is analyzed and a system of so-called solution dimensions is presented, which covers all important aspects of stiffened shell structures and their production. An integrated product data model is developed to cover all of the solution dimensions.

Findings

The product data model consists of five coherent partial models. It is explained how these models are defined and how they are connected to each other. An academic example of an aircraft fuselage panel is used to demonstrate the definition process. It is shown how even complex structural concepts are defined systematically.

Practical implications

It is explained how this integrated product data model is used in a software project for the development of aircraft fuselage structures.

Originality/value

The presented approach for the definition and representation of stiffened shell structures enables the developer, e.g. of aircraft fuselage, to respect the crucial criterion of manufacturability from early development phases on. Further, new design approaches, e.g. as inspired by topology optimization, can be considered.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 September 2015

Shanshan Bu, Geoffrey Shen, Chimay J. Anumba, Andy K.D. Wong and Xin Liang

This research paper is a literature review of the existing building retrofitting process. It proposes studying the functional, technical, and organizational issues of the green…

1888

Abstract

Purpose

This research paper is a literature review of the existing building retrofitting process. It proposes studying the functional, technical, and organizational issues of the green retrofit process. The purpose of this paper is to expand the domain of design framework for retrofitting existing buildings.

Design/methodology/approach

The paper provides a review of the model-based design process from enrollment to evaluation stages representing the green retrofitting process in selected publications. The paper opted to review the Green Retrofit Design (GRD) process model for achieving a systematic design model of GRD development in the future.

Findings

Functional and maintenance issues are mainly for new buildings, also in the field for renovation and demolishing. Publications also show that environmental, social, and technical issues are often examined separately in the decision process of GRD. Papers in the facility management scale would concentrate more on organization/legal issues. Publications with questionnaire design are devoted to the usage on life-cycle assessment on existing building, but not yet on the stakeholder management and design process and related issues.

Social implications

The achievement of the study is to provide a new framework of design approach that is significant to the theoretical research, education, communication, and practical works in terms of GRD development.

Originality/value

The paper not only achieves a specific sequence of practical approaches, including awareness of problems, conceptual development, and design embodiment, to meet design objectives, but also conforms to academic practice-based research of creative design taking on GRD practice.

Details

Smart and Sustainable Built Environment, vol. 4 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 January 2014

Luca Bruzzone and Pietro Fanghella

The aim of the research is the development of a small-scale ground mobile robot for surveillance and inspection; the main design goals are mobility in indoor environments with…

Abstract

Purpose

The aim of the research is the development of a small-scale ground mobile robot for surveillance and inspection; the main design goals are mobility in indoor environments with step climbing ability, pivoting around a vertical axis and without oscillations for stable vision, mobility in unstructured environments, low mechanical and control complexity.

Design/methodology/approach

The proposed hybrid leg-wheel robot is characterized by a main body equipped with two actuated wheels and two praying Mantis rotating legs; a rear frame with two idle wheels is connected to the main body by a vertical revolute joint for steering; a second revolute joint allows the rear axle to roll. The geometrical synthesis of the robot has been performed using a nondimensional approach for generality's sake.

Findings

The experimental campaign on the first prototype confirms the fulfilment of the design objectives; the robot can efficiently walk in unstructured environments realizing a mixed wheeled-legged locomotion.

Practical implications

Thanks to the operative flexibility of Mantis in indoor and outdoor environments, the range of potential applications is wide: surveillance, inspection, monitoring of dangerous locations, intervention in case of terroristic attacks, military tasks.

Originality/value

Different from other robots of similar size, Mantis combines high speed and energetic efficiency, stable vision, capability of climbing over high steps, obstacles and unevenness.

Details

Industrial Robot: An International Journal, vol. 41 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 May 2002

CARLOS T. FORMOSO, PATRICIA TZORTZOPOULOS and RENATA LIEDTKE

The performance of the product development process has a critical influence on the efficiency and duration of building projects, as well as on the quality of the final product…

Abstract

The performance of the product development process has a critical influence on the efficiency and duration of building projects, as well as on the quality of the final product. Despite its importance, relatively little attention has been given to the management of this process, if compared with production. The main objective of this paper is to present some results of a research project which aimed to devise a general model for managing the product development process in small sized companies involved in the development and construction of residential and commercial buildings. This model consists of a template for the product development process, which can be used by different companies as a basis to devise their own models for managing individual projects. The development of the model was based on case studies carried out in two companies from the south of Brazil and also on a benchmarking study.

Details

Engineering, Construction and Architectural Management, vol. 9 no. 5/6
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 5000