Search results

1 – 10 of 294
Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Content available
Article
Publication date: 19 December 2023

Tamara Apostolou, Ioannis N. Lagoudis and Ioannis N. Theotokas

This paper aims to identify the interplay of standard Capesize optimal speeds for time charter equivalent (TCE) maximization in the Australia–China iron ore route and the optimal…

Abstract

Purpose

This paper aims to identify the interplay of standard Capesize optimal speeds for time charter equivalent (TCE) maximization in the Australia–China iron ore route and the optimal speeds as an operational tool for compliance with the International Maritime Organization (IMO) carbon intensity indicator (CII).

Design/methodology/approach

The TCE at different speeds have been calculated for four standard Capesize specifications: (1) standard Capesize with ecoelectronic engine; (2) standard Capesize with non-eco engine (3) standard Capesize vessel with an eco-electronic engine fitted with scrubber and (4) standard Capesize with non-eco engine and no scrubber fitted.

Findings

Calculations imply that in a highly inflationary bunker price context, the dollar per ton freight rates equilibrates at levels that may push optimal speeds below the speeds required for minimum CII compliance (C Rating) in the Australia–China trade. The highest deviation of optimal speeds from those required for minimum CII compliance is observed for non-eco standard Capesize vessels without scrubbers. Increased non-eco Capesize deployment would see optimal speeds structurally lower at levels that could offer CII ratings improvements.

Originality/value

While most of the studies have covered the use of speed as a tool to improve efficiency and emissions in the maritime sector, few have been identified in the literature to have examined the interplay between the commercial and operational performance in the dry bulk sector stemming from the freight market equilibrium. The originality of this paper lies in examining the above relation and the resulting optimal speed selection in the Capesize sector against mandatory environmental targets.

Details

Maritime Business Review, vol. 9 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Article
Publication date: 8 September 2023

Tolga Özer and Ömer Türkmen

This paper aims to design an AI-based drone that can facilitate the complicated and time-intensive control process for detecting healthy and defective solar panels. Today, the use…

Abstract

Purpose

This paper aims to design an AI-based drone that can facilitate the complicated and time-intensive control process for detecting healthy and defective solar panels. Today, the use of solar panels is becoming widespread, and control problems are increasing. Physical control of the solar panels is critical in obtaining electrical power. Controlling solar panel power plants and rooftop panel applications installed in large areas can be difficult and time-consuming. Therefore, this paper designs a system that aims to panel detection.

Design/methodology/approach

This paper designed a low-cost AI-based unmanned aerial vehicle to reduce the difficulty of the control process. Convolutional neural network based AI models were developed to classify solar panels as damaged, dusty and normal. Two approaches to the solar panel detection model were adopted: Approach 1 and Approach 2.

Findings

The training was conducted with YOLOv5, YOLOv6 and YOLOv8 models in Approach 1. The best F1 score was 81% at 150 epochs with YOLOv5m. In total, 87% and 89% of the best F1 score and mAP values were obtained with the YOLOv5s model at 100 epochs in Approach 2 as a proposed method. The best models at Approaches 1 and 2 were used with a developed AI-based drone in the real-time test application.

Originality/value

The AI-based low-cost solar panel detection drone was developed with an original data set of 1,100 images. A detailed comparative analysis of YOLOv5, YOLOv6 and YOLOv8 models regarding performance metrics was realized. Gaussian, salt-pepper noise addition and wavelet transform noise removal preprocessing techniques were applied to the created data set under the proposed method. The proposed method demonstrated expressive and remarkable performance in panel detection applications.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 30 October 2023

Koraljka Golub, Xu Tan, Ying-Hsang Liu and Jukka Tyrkkö

This exploratory study aims to help contribute to the understanding of online information search behaviour of PhD students from different humanities fields, with a focus on…

Abstract

Purpose

This exploratory study aims to help contribute to the understanding of online information search behaviour of PhD students from different humanities fields, with a focus on subject searching.

Design/methodology/approach

The methodology is based on a semi-structured interview within which the participants are asked to conduct both a controlled search task and a free search task. The sample comprises eight PhD students in several humanities disciplines at Linnaeus University, a medium-sized Swedish university from 2020.

Findings

Most humanities PhD students in the study have received training in information searching, but it has been too basic. Most rely on web search engines like Google and Google Scholar for publications' search, and university's discovery system for known-item searching. As these systems do not rely on controlled vocabularies, the participants often struggle with too many retrieved documents that are not relevant. Most only rarely or never use disciplinary bibliographic databases. The controlled search task has shown some benefits of using controlled vocabularies in the disciplinary databases, but incomplete synonym or concept coverage as well as user unfriendly search interface present hindrances.

Originality/value

The paper illuminates an often-forgotten but pervasive challenge of subject searching, especially for humanities researchers. It demonstrates difficulties and shows how most PhD students have missed finding an important resource in their research. It calls for the need to reconsider training in information searching and the need to make use of controlled vocabularies implemented in various search systems with usable search and browse user interfaces.

Article
Publication date: 11 March 2022

Ying Lv, Jinlong Feng, Guangbin Wang and Hua Li

This study aims to improve the maneuverability and stability of four-wheel chassis in a small paddy field; a front axle swing steering four-wheel chassis with optimal steering is…

Abstract

Purpose

This study aims to improve the maneuverability and stability of four-wheel chassis in a small paddy field; a front axle swing steering four-wheel chassis with optimal steering is designed.

Design/methodology/approach

When turning, the front inner wheel stops and the rear inner wheel is in the following state. The hydraulic drive system of the walking wheel adopts a driving mode in which two front-wheel motors are connected in series and two rear wheel motors in parallel. The chassis uses a combination of a gasoline engine with a water cooling system, a CVT continuously variable transmission and a hydraulic drive system to increase the control capability. The front axle rotary chassis adopts a step-less variable speed engine and a hydraulic control system to solve the hydraulic stability of the chassis in uphill and downhill conditions so as to effectively control the over-speed of the wheel-side drive motors. Through the quadratic orthogonal rotation combination design test, the mathematical models of uphill and downhill front-wheel pressures and test factors are established.

Findings

The results show that the chassis stability is optimal when the back pressure is 0.5 MPa, and the rotating slope is 4°. The uphill and downhill pressures of the front wheels are 2.38 MPa and 1.5 MPa, respectively.

Originality/value

The influence of external changes on the pressure of hydraulic motors is studied through experiments, which lays the foundation for further research.

Details

Journal of Engineering, Design and Technology, vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 November 2023

Rodolfo Canelón, Christian Carrasco and Felipe Rivera

It is well known in the mining industry that the increase in failures and breakdowns is due mainly to a poor maintenance policy for the equipment, in addition to the difficult…

Abstract

Purpose

It is well known in the mining industry that the increase in failures and breakdowns is due mainly to a poor maintenance policy for the equipment, in addition to the difficult access that specialized personnel have to combat the breakdown, which translates into more machine downtime. For this reason, this study aims to propose a remote assistance model for diagnosing and repairing critical breakdowns in mining industry trucks using augmented reality techniques and data analytics with a quality approach that considerably reduces response times, thus optimizing human resources.

Design/methodology/approach

In this work, the six-phase CRIPS-DM methodology is used. Initially, the problem of fault diagnosis in trucks used in the extraction of material in the mining industry is addressed. The authors then propose a model under study that seeks a real-time connection between a service technician attending the truck at the mine site and a specialist located at a remote location, considering the data transmission requirements and the machine's characterization.

Findings

It is considered that the theoretical results obtained in the development of this study are satisfactory from the business point of view since, in the first instance, it fulfills specific objectives related to the telecare process. On the other hand, from the data mining point of view, the results manage to comply with the theoretical aspects of the establishment of failure prediction models through the application of the CRISP-DM methodology. All of the above opens the possibility of developing prediction models through machine learning and establishing the best model for the objective of failure prediction.

Originality/value

The original contribution of this work is the proposal of the design of a remote assistance model for diagnosing and repairing critical failures in the mining industry, considering augmented reality and data analytics. Furthermore, the integration of remote assistance, the characterization of the CAEX, their maintenance information and the failure prediction models allow the establishment of a quality-based model since the database with which the learning machine will work is constantly updated.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 8 January 2024

Morteza Mohammadi Ostani, Jafar Ebadollah Amoughin and Mohadeseh Jalili Manaf

This study aims to adjust Thesis-type properties on Schema.org using metadata models and standards (MS) (Bibframe, electronic thesis and dissertations [ETD]-MS, Common European…

Abstract

Purpose

This study aims to adjust Thesis-type properties on Schema.org using metadata models and standards (MS) (Bibframe, electronic thesis and dissertations [ETD]-MS, Common European Research Information Format [CERIF] and Dublin Core [DC]) to enrich the Thesis-type properties for better description and processing on the Web.

Design/methodology/approach

This study is applied, descriptive analysis in nature and is based on content analysis in terms of method. The research population consisted of elements and attributes of the metadata model and standards (Bibframe, ETD-MS, CERIF and DC) and Thesis-type properties in the Schema.org. The data collection tool was a researcher-made checklist, and the data collection method was structured observation.

Findings

The results show that the 65 Thesis-type properties and the two levels of Thing and CreativeWork as its parents on Schema.org that corresponds to the elements and attributes of related models and standards. In addition, 12 properties are special to the Thesis type for better comprehensive description and processing, and 27 properties are added to the CreativeWork type.

Practical implications

Enrichment and expansion of Thesis-type properties on Schema.org is one of the practical applications of the present study, which have enabled more comprehensive description and processing and increased access points and visibility for ETDs in the environment Web and digital libraries.

Originality/value

This study has offered some new Thesis type properties and CreativeWork levels on Schema.org. To the best of the authors’ knowledge, this is the first time this issue is investigated.

Details

Digital Library Perspectives, vol. 40 no. 2
Type: Research Article
ISSN: 2059-5816

Keywords

Article
Publication date: 20 November 2023

Madhuri Prabhala and Indranil Bose

While there has been extensive research on understanding the effects of online reviews on product sales, there is not enough investigation of the inter-relationships between…

Abstract

Purpose

While there has been extensive research on understanding the effects of online reviews on product sales, there is not enough investigation of the inter-relationships between online reviews, online search and product sales. The study attempts to address this gap in the context of the Indian car market.

Design/methodology/approach

The research uses text mining and considers six important review features volume, valence, length, deviation of valence, sentiment and readability within the heuristic and systematic model of information processing. Panel data regression is used along with mediation analysis to study the inter-relationships between features of reviews, online search and sales.

Findings

The study finds that numerical heuristic features significantly affect sales and online search, numerical systematic feature affects sales and the textual heuristic and systematic features do not affect sales or online search in the Indian car market. Further, online search mediates the association between features of reviews and sales of cars.

Research limitations/implications

Although only car sales data from India is considered in this research, similar relationships between review features, online search and sales could exist for the car market of other countries as well.

Originality/value

This research uncovers the unique role of online search as a mediator between review features and sales, whereas prior literature has considered review features and online search as independent variables that affect sales.

Details

Industrial Management & Data Systems, vol. 124 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

1113

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Access

Year

Last 6 months (294)

Content type

Article (294)
1 – 10 of 294