Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 5 April 2023

Shan Chen, Yuandi Wang, Hongping Du and Zhiyu Cui

Although the tasks of managing carbon peaks and achieving carbon neutrality in China are arduous, they are also of great significance, which highlights China’s determination and…

Abstract

Purpose

Although the tasks of managing carbon peaks and achieving carbon neutrality in China are arduous, they are also of great significance, which highlights China’s determination and courage in dealing with climate change. The power industry is not only a major source of carbon emissions but also an important area for carbon emission reduction. Thus, against the backdrop of carbon neutrality, understanding the development status of China’s power industry guided by the carbon neutrality background is important because it largely determines the completeness of China’s carbon reduction promises to the world. This study aims to review China’s achievements in carbon reduction in the electric industry, its causes and future policy highlights.

Design/methodology/approach

The methods used in this study include descriptive analyses based on official statistics, government documents and reports.

Findings

The research results show that, after years of development, the power industry has achieved positive results in low-carbon provisions and in the electrification of consumption, and carbon emission intensity has continued to decline. Policy initiatives play a key role in this process, including, but not limited to, technology innovations, low-carbon power replacement and supported policies for low-carbon transformation toward low-carbon economies.

Originality/value

This study provides a full picture of China’s power industry against the backdrop of low-carbon development, which could be used as a benchmark for other countries engaging in the same processes. Moreover, a careful review of China’s development status may offer profound implications for policymaking both for China and for other governments across the globe.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Content available
Article
Publication date: 1 June 2001

1342

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 5 February 2024

Oluwadamilola Esan, Nnamdi I. Nwulu, Love Opeyemi David and Omoseni Adepoju

This study aims to investigate the impact of the 2013 privatization of Nigeria’s energy sector on the technical performance of the Benin Electricity Distribution Company (BEDC…

Abstract

Purpose

This study aims to investigate the impact of the 2013 privatization of Nigeria’s energy sector on the technical performance of the Benin Electricity Distribution Company (BEDC) and its workforce.

Design/methodology/approach

This study used a questionnaire-based approach, and 196 participants were randomly selected. Analytical tools included standard deviation, Spearman rank correlation and regression analysis.

Findings

Before privatization, the energy sector, managed by the power holding company of Nigeria, suffered from inefficiencies in fault detection, response and billing. However, privatization improved resource utilization, replaced outdated transformers and increased operational efficiency. However, in spite of these improvements, BEDC faces challenges, including unstable voltage generation and inadequate staff welfare. This study also highlighted a lack of experience among the trained workforce in emerging electricity technologies such as the smart grid.

Research limitations/implications

This study’s focus on BEDC may limit its generalizability to other energy companies. It does not delve into energy sector privatization’s broader economic and policy implications.

Practical implications

The positive outcomes of privatization, such as improved resource utilization and infrastructure investment, emphasize the potential benefits of private ownership and management. However, voltage generation stability and staff welfare challenges call for targeted interventions. Recommendations include investing in voltage generation enhancement, smart grid infrastructure and implementing measures to enhance employee well-being through benefit plans.

Social implications

Energy sector enhancements hold positive social implications, uplifting living standards and bolstering electricity access for households and businesses.

Originality/value

This study contributes unique insights into privatization’s effects on BEDC, offering perspectives on preprivatization challenges and advancements. Practical recommendations aid BEDC and policymakers in boosting electricity distribution firms’ performance within the privatization context.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Open Access
Book part
Publication date: 4 May 2018

Janter Napitupulu, Herman Mawengkang, Usman Ba’afai and Nasruddin M.N.

Purpose – The purpose of this study was to determine the efficacy value of national street lighting on energy conservation and carbon dioxide (CO2) emission reduction…

Abstract

Purpose – The purpose of this study was to determine the efficacy value of national street lighting on energy conservation and carbon dioxide (CO2) emission reduction.

Design/Methodology/Approach – The methods used are the measurement of electrical parameters (low voltage network), the national road illumination level with SON lamp specification, 400 W, 180 W, and 110 Lumen/W, the simulation of energy conservation calculation, and the CO2 emission reduction obtained by utilizing panel solar cells as a source of energy and LED lights for illumination.

Finding – The results show the efficacy of a 100-W light bulb at an altitude of 8 m for the following specification of light bulbs: LED, 130 Lumens/W, SON, 110 Lumen/W, and MBF, 53 Lumen/W gives the illumination level respectively 13,913 Lux, 11,773 Lux, and 5,672 Lux. By replacing the 180 W SON lamp with an LED, 100 W, of energy conservation by 3.171 GW h is obtained, which is equivalent to a CO2 emission reduction of 3.641 kTon CO2.

Originality/Value – This study is a continuation of a study of energy conservation with the utilization of solar cells as an electrical power source for an LED bulb that replaces low-voltage networks as a power source for the bulb type SON.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 4 March 2020

Marco Fioriti, Silvio Vaschetto, Sabrina Corpino and Giovanna Premoli

This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design…

1814

Abstract

Purpose

This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design of the enabling technologies needed for a hybrid/electric medium altitude long endurance (MALE) unmanned aerial vehicle (UAV) to perform persistent intelligence surveillance reconnaissance (ISR) military operations.

Design/methodology/approach

Different architectures of hybrid-propulsion system are analyzed pointing out their operating modes to select the more suitable architecture for the reference aircraft. The selected architecture is further analyzed together with its electric power plant branch focusing on electric system architecture and the selected electric machine. A final comparison between the hybrid and standard propulsion is given at aircraft level.

Findings

The use of hybrid propulsion may lead to a reduction of the total aircraft mass and an increase in safety level. However, this result comes together with a reduced performance in climb phase.

Practical implications

This study can be used as a reference for similar studies and it provides a detailed description of propulsion operating modes, power management, electric system and machine architecture.

Originality/value

This study presents a novel application of hybrid propulsion focusing on a three tons class MALE UAV for ISR missions. It provides new operating modes of the propulsion system and a detailed electric architecture of its powertrain branch and machine. Some considerations on noise emissions and infra-red traceability of this propulsion, at aircraft level.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 27 July 2022

Huaihua Zheng

Striving to achieve the goal of carbon neutrality before 2060 indicates that China, as the most extensive power system in the world and a country based on coal power, is…

Abstract

Purpose

Striving to achieve the goal of carbon neutrality before 2060 indicates that China, as the most extensive power system in the world and a country based on coal power, is imperative to improve the technical level of electric power utilization. This paper aims to explore the nonlinear evolution mechanism of power technology progress under the constraints of net-zero carbon dioxide emissions in China.

Design/methodology/approach

This paper, first, based on China’s provincial panel data from 2000 to 2019, uses global direction distance function to measure power technological progress. Second, the threshold regression model is used to explore the nonlinear relationship between carbon emission reduction constraints on electric power technological progress.

Findings

There is a significant inverted U-shaped relationship between China’s provincial carbon emission reduction constraints and electric power technological progress. Meanwhile, the scale of regional economic development has a significant moderating effect on the relationship between carbon emission reduction constraints and power technological progress.

Research limitations/implications

This paper puts forward targeted suggestions for perfecting regional carbon emission reduction policy and improving electric power technological progress.

Originality/value

Based on the global directional distance function, this paper extracts power as a production factor in total factor productivity and calculates the total factor electric power technological progress. This paper objectively reveals the influence mechanism of carbon emission reduction constraints on electric power technology progress based on the threshold regression model.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 23 May 2023

Roland Ryndzionek, Michal Michna, Filip Kutt, Grzegorz Kostro and Krzysztof Blecharz

The purpose of this paper is to provide an analysis of the performance of a new five-phase doubly fed induction generator (DFIG).

Abstract

Purpose

The purpose of this paper is to provide an analysis of the performance of a new five-phase doubly fed induction generator (DFIG).

Design/methodology/approach

This paper presents the results of a research work related to five-phase DFIG framing, including the development of an analytical model, FEM analysis as well as the results of laboratory tests of the prototype. The proposed behavioral level analytical model is based on the winding function approach. The developed DFIG model was used at the design stage to simulate the generator’s no-load and load state. Then, the results of the FEM analysis were shown and compared with the results of laboratory tests of selected DFIG operating states.

Findings

The paper provides the results of analytical and FEM simulation and measurement tests of the new five-phase dual-feed induction generator. The use of the MATLAB Simscape modeling language allows for easy and quick implementation of the model. Design assumptions and analytical model-based analysis have been verified using FEM analysis and measurements performed on the prototype. The results of the presented research validate the design process as well as show the five-phase winding design advantage over the three-phase solution regarding the control winding power quality.

Research limitations/implications

The main disadvantage of the winding function approach-based model development is the simplification regarding omitting the tangential airgap flux density component. However, this fault only applies to large airgap machines and is insignificant in induction machines. The results of the DFIG analyses were limited to the basic operating states of the generator, i.e. the no-load state, the inductive and resistive load.

Practical implications

The novel DFIG with five phase rotor control winding can operate as a regular three-phase machine in an electric power generation system and allows for improved control winding power quality of the proposed electrical energy generation system. This increase in power quality is due to the rotor control windings inverter-based PWM supply voltage, which operates with a wider per-phase supply voltage range than a three-phase system. This phenomenon was quantified using control winding current harmonic analysis.

Originality/value

The paper provides the results of analytical and FEM simulation and measurement tests of the new five-phase dual-feed induction generator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 1 May 2020

Juliana Pacheco Barbosa, Joisa Dutra Saraiva and Julia Seixas

The purpose of this paper is to highlight the opportunity for the energy policy in Brazil to tackle the very high cost-effectiveness potencial of solar energy to the power system…

3417

Abstract

Purpose

The purpose of this paper is to highlight the opportunity for the energy policy in Brazil to tackle the very high cost-effectiveness potencial of solar energy to the power system. Three mechanisms to achieve ambitious reductions in the greenhouse gas emissions from the power sector by 2030 and 2040 are assessed wherein treated as solar targets under ambitious reductions in the greenhouse gas emissions from the power sector. Then, three mechanisms to achieve these selected solar targets are suggested.

Design/methodology/approach

This paper reviews current and future incentive mechanisms to promote solar energy. An integrated energy system optimization model shows the most cost-efficient deployment level. Incentive mechanisms can promote renewable sources, aiming to tackle climate change and ensuring energy security, while taking advantage of endogenous energy resources potential. Based on a literature review, as well as on the specific characteristics of the Brazilian power system, under restrictions for the expansion of hydroelectricity and ambitious limitation in the emissions of greenhouse gases from the power sector.

Findings

The potential unexploited of solar energy is huge but it needs the appropriate incentive mechanism to be deployed. These mechanisms would be more effective if they have a specific technological and temporal focus. The solar energy deployment in large scale is important to the mitigation of climate change.

Originality/value

The value of the research is twofold: estimations of the cost-effective potential of solar technologies, generated from an integrated optimization energy model, fully calibrated for the Brazilian power system, while tacking the increasing electricity demand, the expected reduction of greenhouse gas emissions and the need to increase the access to clean and affordable energy, up to 2040; proposals of three mechanisms to deploy centralized PV, distributed PV and solar thermal power, taking the best experiences in several countries and the recent Brazilian cases.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 21 June 2019

Paulo Nobre, Enio Bueno Pereira, Francinete Francis Lacerda, Marcel Bursztyn, Eduardo Amaral Haddad and Debora Ley

This study aims to exploit the abundance of solar energy resources for socioeconomic development in the semi -arid Northeastern Brazil as a potent adaptation tool to global…

2248

Abstract

Purpose

This study aims to exploit the abundance of solar energy resources for socioeconomic development in the semi -arid Northeastern Brazil as a potent adaptation tool to global climate change. It points out a set of conjuncture factors that allow us to foresee a new paradigm of sustainable development for the region by transforming the sun’s radiant energy into electricity through distributed photovoltaic generation. The new paradigm, as presented in this essay, has the transformative potential to free the region from past regional development dogma, which was dependent on the scarce water resource, and the marginal and predatory use of its Caatinga Biome.

Design/methodology/approach

The research uses a pre ante design, following the procedures of scenario building, as an adaptation mechanism to climate change in the sector of energy generation and socioeconomic inclusion.

Findings

The scenarios of socioeconomic resilience to climate change based on the abundance of solar radiation, rather than the scarcity of water, demonstrates its potential as a global adaptation paradigm to climate change.

Research limitations/implications

The developments proposed are dependent on federal legislation changes, allowing the small producer to be remunerated by the energy produced.

Practical implications

The proposed smart grid photovoltaic generation program increases the country's resiliency to the effect of droughts and climate change.

Social implications

As proposed, the program allows for the reversion of a pattern of long term poverty in semi-arid Northeast Brazil.

Originality/value

The exploitation of the characteristics of abundance of the semiarid climate, i.e. its very condition of semi-aridity with abundant solar radiation, is itself an advantage factor toward adaption to unforeseen drought events. Extensive previous research has focused on weighting and monitoring drought i.e. the paradigm of scarcity. The interplay between exploiting Northeast Brazil’s abundant factors and climate change adaptation, especially at the small farmer levels constitutes a discovery never before contemplated.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 17 August 2021

Emanuele Quaranta, Toni Pujol and Maria Carmela Grano

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to…

1874

Abstract

Purpose

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to preliminary estimate related benefits and costs of a VAWM repowering.

Design/methodology/approach

Two sustainable repowering solutions were examined with the additional aim to preserve the original status and aesthetics of a VAWM: the use of a vertical axis water wheel (VAWW) and a vertical axis impulse turbine. The analysis was applied to a database of 714 VAWMs in Basilicata (Italy), with known head and flow.

Findings

Expeditious equations were proposed for both solutions to determine: (1) a suitable diameter as a function of the flow rate; (2) the costs of the electromechanical equipment; (3) achievable power. The common operating hydraulic range of a VAWM (head and flow) was also identified. Reality checks on the obtained results are shown, in particular by examining two Spanish case studies and the available literature. The power generated by the impulse turbine (Turgo type) is twice that of a VAWW, but it is one order of magnitude more expensive. Therefore, the impulse turbine should be used for higher power requirements (>3 kW), or when the electricity is delivered to the grid, maximizing the long-term profit.

Originality/value

Since there is not enough evidence about the achievable performance and cost of a VAWM repowering, this work provides expeditious tools for their evaluation.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

1 – 10 of over 1000