Search results

1 – 10 of over 15000
To view the access options for this content please click here
Article
Publication date: 1 December 2003

Andrzej Tomczyk

In this paper, results of the flight‐testing of an unmanned aerial vehicle (UAV) flight control system are presented. APC‐4 “SkyGuide” autonomous navigation and control

Abstract

In this paper, results of the flight‐testing of an unmanned aerial vehicle (UAV) flight control system are presented. APC‐4 “SkyGuide” autonomous navigation and control system, designed and developed by the research team of the Department of Avionics and Control at Rzeszów University of Technology, has been tested. Properties of this flight control system, as well as selected results of the in‐flight tests conducted on board of the PZL‐110 “Koliber” aircraft, are presented. Results obtained confirm that design assumptions of the navigation and control system and research methodology have been appropriate and APC‐4 autopilot can be used on UAVs board.

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 27 September 2018

Tomasz Rogalski

This paper aims to present the idea of an automatic control system dedicated to small manned and unmanned aircraft performing manoeuvres other than those necessary to…

Abstract

Purpose

This paper aims to present the idea of an automatic control system dedicated to small manned and unmanned aircraft performing manoeuvres other than those necessary to perform a so-called standard flight. The character of these manoeuvres and the range of aircraft flight parameter changes restrict application of standard control algorithms. In many cases, they also limit the possibility to acquire complete information about aircraft flight parameters. This paper analyses an alternative solution that can be applied in such cases. The loop manoeuvre, an element of aerobatic flight, was selected as a working example.

Design/methodology/approach

This paper used theoretical discussion and breakdowns to create basics for designing structures of control algorithms. A simplified analytical approach was then applied to tune regulators. Research results were verified in a series of computer-based software-in-the-loop rig test computer simulations.

Findings

The structure of the control system enabling aerobatic flight was found and the method for tuning regulators was also created.

Practical implications

The findings could be a foundation for autopilots working in non-conventional flight scenarios and automatic aircraft recovery systems.

Originality/value

This paper presents the author’s original approach to aircraft automated control where high precision control is not the priority and flight parameters cannot be precisely measured or determined.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 16 May 2008

Andrzej Tomczyk

The purpose of this paper is to present analysis and primary evaluation of different control laws implemented on experimental indirect (fly‐by‐wire) flight control system…

Abstract

Purpose

The purpose of this paper is to present analysis and primary evaluation of different control laws implemented on experimental indirect (fly‐by‐wire) flight control system designed for perspective general aviation aircraft.

Design/methodology/approach

The control law tests have been accomplished on the flight simulation stand equipped with side‐stick, throttle lever and flight instrument display. Every evaluator was caring out 2‐4 five min instrument flights (IR) according to command shown on the screen. PZL‐110 general aviation aircraft properties and seven modes of control system operation were modeled and examined.

Findings

Results of evaluation by 45 commercial pilots are analyzed and handling qualities of the small aircraft equipped with the indirect flight control system (fly‐by‐wire) have been examined. In this way, the most convenient control law was chosen for design the user‐friendly, human‐centered, simplified software‐based flight control system.

Practical implications

The result of research can be implemented on real indirect flight control system dedicated to general aviation aircraft.

Originality/value

This paper presents the practical approach for analysis of handling qualities of general aviation aircraft equipped with indirect flight control system. This kind of works concern to military and transport airplanes are known, however there are no published work in the area of small aircraft so far.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 7 September 2010

Andrzej Tomczyk

The main targets of the work are analysis and simulation of flying laboratory performance. In particular, synthesis of control system for handling qualities change and…

Abstract

Purpose

The main targets of the work are analysis and simulation of flying laboratory performance. In particular, synthesis of control system for handling qualities change and evaluation in flight are taken into consideration.

Design/methodology/approach

Modification of handling qualities is obtained by applying indirect flight control system (FBW). The properties of the optimal controller are calculated through the indirect (implicit) model‐following method. In particular, the modified version based on the computer simulations is used.

Findings

Calculation and simulation concern the synthesis of desired handling qualities of the general aviation aircraft PZL‐M20 “Mewa” equipped with indirect (FBW) experimental flight control system. Results of the simulation show that the flying laboratory has the same properties as modeled aircraft, and it is possible to say that handling properties concern attitude orientation of the experimental aircraft is similar to modeled commuter aircraft.

Practical implications

The result of research can be implemented on a project of the flying laboratory based on general aviation aircraft PZL M20 “Mewa”.

Originality/value

The paper presents the practical approach for synthesis of the “Simplified total in flight simulator” performance which can be used for analysis of handling qualities of general aviation aircraft equipped with FBW. Research of this type focuses on military and transport airplanes however, there are no published works in the area of small aircraft so far.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 4 January 2016

Predrag Stojakovic and Bosko Rasuo

The purpose of this paper is to present a method for determining the safe flight boundaries of the asymmetrically loaded airplane in the terminal flight phases. The method…

Abstract

Purpose

The purpose of this paper is to present a method for determining the safe flight boundaries of the asymmetrically loaded airplane in the terminal flight phases. The method is applicable to both, the inherent airplane asymmetries and those asymmetries resulting from the airplane use irregularities, asymmetric stores under the wing being one of the examples. The method is aimed to be used in the airplane design and combat airplane service life support.

Design/methodology/approach

The analysis method is based on the comparison of demanded and structurally available flight control displacements. Control surface aerodynamic properties, structurally available flight control displacements and dynamic pressure define control surface authority as the capability of control surfaces to generate the forces and moments needed by the airplane to perform required maneuvers. Demanded flight control displacements are those related to the maneuvering requirements and to those needed to compensate lateral wind and any type of the asymmetric airplane load.

Findings

The method results are given in the form of the speed and lateral wind component and are a subset of the total set of airplane safe flight boundaries. The key objective is the improvement of flight safety of the asymmetrically loaded airplane.

Research limitations/implications

The method supplements the safe flight boundaries of the symmetrically loaded airplane, the minimal landing speed being the dominant limitation. This boundary positions method analysis in the domain of linear lift coefficient variation, as the function of the angle of attack permits the addition of control surface displacements required to perform the maneuvers and compensate the asymmetrical loads.

Originality/value

The method combines a simple roll dynamics model, stationary equations of the airplane lateral-directional motion and several numeric analysis procedures to obtain the results. This new combination possesses synergy properties and is implemented as the computer program.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 8 March 2021

Tomasz Rogalski, Paweł Rzucidło, Stanisław Noga and Jacek Prusik

The purpose of this paper is to present the idea of automatic flight control algorithms capable of performing an Immelmann turn manoeuvre automatically. This is a case of…

Abstract

Purpose

The purpose of this paper is to present the idea of automatic flight control algorithms capable of performing an Immelmann turn manoeuvre automatically. This is a case of a manoeuvre far removed from so-called standard flight. The character of this manoeuvre and the range of changes in the aircraft flight parameters restrict the application of standard control algorithms. Furthermore, the possibility of acquiring full and detailed information about the aircraft’s flight parameters is limited in such cases. This paper seeks to analyse an alternative solution that can be applied in some specific cases.

Design/methodology/approach

This paper uses theoretical discussion and breakdowns to create the basics for development of structures of control algorithms. A simplified analytical approach was applied to tune regulators and the results of the research were verified in a series of software-in-the loop computer simulations.

Findings

The structure of the control system enabling aerobatic flight (with the Immelmann turn as the selected example) was identified and the method for tuning the regulators is also presented.

Practical implications

It could serve as a foundation for autopilots working in non-conventional flight states and aircraft automatic recovery systems.

Originality/value

This paper presents the author’s original approach to aircraft automatic control when high control precision is not the priority and not all flight parameters can be precisely measured.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 6 January 2021

Navya Thirumaleshwar Hegde, V. I. George, C. Gurudas Nayak and Aldrin Claytus Vaz

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid…

Abstract

Purpose

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial vehicles (UAVs). The variation in the aerodynamics and model dynamics of these aerial vehicles due to its tilting rotors are the key issues and challenges, which attracts the attention of many researchers. They carry parametric uncertainties (such as non-linear friction force, backlash, etc.), which drives the designed controller based on the nominal model to instability or performance degradation. The controller needs to take these factors into consideration and still give good stability and performance. Hence, a robust H-infinity controller is proposed that can handle these uncertainties.

Design/methodology/approach

A unique VTOL Quad Tiltrotor hybrid UAV, which operates in three flight modes, is mathematically modeled using Newton–Euler equations of motion. The contribution of the model is its ability to combine high-speed level flight, VTOL and transition between these two phases. The transition involves the tilting of the proprotors from 90° to 0° and vice-versa in 15° intervals. A robust H-infinity control strategy is proposed, evaluated and analyzed through simulation to control the flight dynamics for different modes of operation.

Findings

The main contribution of this research is the mathematical modeling of three flight modes (vertical takeoff–forward, transition–cruise-back, transition-vertical landing) of operation by controlling the revolutions per minute and tilt angles, which are independent of each other. An autonomous flight control system using a robust H-infinity controller to stabilize the mode of transition is designed for the Quad Tiltrotor UAV in the presence of uncertainties, noise and disturbances using MATLAB/SIMULINK. This paper focused on improving the disturbance rejection properties of the proposed UAV by designing a robust H-infinity controller for position and orientation trajectory regulation in the presence of uncertainty. The simulation results show that the Tiltrotor achieves transition successfully with disturbances, noise and uncertainties being present.

Originality/value

A novel VTOL Quad Tiltrotor UAV mathematical model is developed with a special tilting rotor mechanism, which combines both aircraft and helicopter flight modes with the transition taking place in between phases using robust H-infinity controller for attitude, altitude and trajectory regulation in the presence of uncertainty.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

To view the access options for this content please click here

Abstract

Details

Harnessing the Power of Failure: Using Storytelling and Systems Engineering to Enhance Organizational Learning
Type: Book
ISBN: 978-1-78754-199-3

To view the access options for this content please click here
Article
Publication date: 1 January 1962

K. Fearnside

AT the present day the operations of civil transport aeroplanes are severely restricted under conditions of poor visibility and not infrequently flights have to be…

Abstract

AT the present day the operations of civil transport aeroplanes are severely restricted under conditions of poor visibility and not infrequently flights have to be diverted or cancelled. The work of the Blind Landing Experimental Unit of the Ministry of Aviation in the development of a system of automatic landing for military aircraft has been described elsewhere.1 A flight control system is described in this paper, which given the necessary azimuth guidance signals from ground based installations, will extend the advantages of automatic landings into the civil field.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 21 July 2020

Tomasz Rogalski, Paweł Rzucidło and Jacek Prusik

The paper aims to present an idea of automatic control algorithms dedicated to both small manned and unmanned aircraft, capable to perform spin maneuver automatically…

Abstract

Purpose

The paper aims to present an idea of automatic control algorithms dedicated to both small manned and unmanned aircraft, capable to perform spin maneuver automatically. This is a case of maneuver far away from so-called standard flight. The character of this maneuver and the range of aircraft flight parameters changes restrict application of standard control algorithms. Possibility of acquisition full information about aircraft flight parameters is limited as well in such cases. This paper analyses an alternative solution that can be applied in some specific cases.

Design/methodology/approach

The paper uses theoretical discussion and breakdowns to create basics for development of structures of control algorithms. Simplified analytical approach was applied to tune regulators. Results of research were verified in series of software-in-the loop, computer simulations.

Findings

The structure of the control system enabling aerobatic flight (spin flight as example selected) was found and the method how to tune regulators was presented as well.

Practical implications

It could be a fundament for autopilots working in non-conventional flight states and aircraft automatic recovery systems.

Originality/value

The paper presents author’s original approach to aircraft automatic control when high control precision is not the priority, and not all flight parameters can be precisely measured.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 15000