Search results

1 – 10 of 110
Article
Publication date: 1 May 2006

Tomasz Goetzendorf‐Grabowski, Andrzej Frydrychewicz, Zdobysław Goraj and Stanisław Suchodolski

This study seeks to present the initial requirements for medium altitude long endurance (MALE) UAV design of an increased reliability.

2188

Abstract

Purpose

This study seeks to present the initial requirements for medium altitude long endurance (MALE) UAV design of an increased reliability.

Design/methodology/approach

Shows and describes the successive design phases of PW‐103 MALE UAV.

Findings

The analysis of the performances of the PW‐103 UAV, powered by either a main or an auxiliary engine, demonstrated that auxiliary power unit improved flight safety significantly.

Originality/value

Successive MALE UAV configurations developed in the design process were aerodynamically more efficient than their predecessors.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 4 March 2020

Marco Fioriti, Silvio Vaschetto, Sabrina Corpino and Giovanna Premoli

This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design…

1811

Abstract

Purpose

This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design of the enabling technologies needed for a hybrid/electric medium altitude long endurance (MALE) unmanned aerial vehicle (UAV) to perform persistent intelligence surveillance reconnaissance (ISR) military operations.

Design/methodology/approach

Different architectures of hybrid-propulsion system are analyzed pointing out their operating modes to select the more suitable architecture for the reference aircraft. The selected architecture is further analyzed together with its electric power plant branch focusing on electric system architecture and the selected electric machine. A final comparison between the hybrid and standard propulsion is given at aircraft level.

Findings

The use of hybrid propulsion may lead to a reduction of the total aircraft mass and an increase in safety level. However, this result comes together with a reduced performance in climb phase.

Practical implications

This study can be used as a reference for similar studies and it provides a detailed description of propulsion operating modes, power management, electric system and machine architecture.

Originality/value

This study presents a novel application of hybrid propulsion focusing on a three tons class MALE UAV for ISR missions. It provides new operating modes of the propulsion system and a detailed electric architecture of its powertrain branch and machine. Some considerations on noise emissions and infra-red traceability of this propulsion, at aircraft level.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 August 2014

Sinem Kahvecioglu and Hakan Oktal

The purpose of this paper is to explore the main Unmanned Aerial Vehicles (UAVs) projects proceeded by Turkey and to reveal the future targets and the status of Turkey among the…

851

Abstract

Purpose

The purpose of this paper is to explore the main Unmanned Aerial Vehicles (UAVs) projects proceeded by Turkey and to reveal the future targets and the status of Turkey among the countries securing enhanced UAV experience.

Design/methodology/approach

The historical development and the future of the UAV systems are analyzed by using the roadmaps, and reports about the UAV market.

Findings

It is found that the development and the production of indigineous UAV systems/subsystems will reduce the costs, and enable Turkey to be independent with respect to when, where, and how to use its own UAV systems.

Originality/value

This study provides historical context for recent developments in UAV sector in Turkey and presents some proposals for the future of the market.

Details

International Journal of Intelligent Unmanned Systems, vol. 2 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 3 October 2016

Sergio Chiesa, Marco Fioriti and Roberta Fusaro

The purpose of this paper is to present a definition of modern configuration for a medium-altitude long-endurance unmanned aerial vehicle (MALE UAV) and its on-board systems to…

Abstract

Purpose

The purpose of this paper is to present a definition of modern configuration for a medium-altitude long-endurance unmanned aerial vehicle (MALE UAV) and its on-board systems to obtain a suitable basis for future definitions such as a possible logistic support configuration first hypothesis.

Design/methodology/approach

Starting from high-level requirements, both the UAV conceptual design and on-board systems preliminary design have been carried out through proprietary tools. Then, some peculiarities from previous studies, such as systems advanced UAV alternative energy, have been maintained and confirmed (diesel propulsion and energy storage system).

Findings

The improvement of a component of an aircraft can play a relevant role in the whole system. In the paper, it is considered how a concept of MALE UAV can evolve (this topic is considered by the authors since many years) by incorporating advanced on-board systems concepts.

Practical implications

The numerical results promote and support the use of advanced on-board system solutions and architectures to improve the effectiveness, efficiency and performance of MALE UAVs.

Originality/value

Usually, conceptual and preliminary design phases analyze in-depth the aerodynamic and structural solutions and aircraft performance. In this study, the authors aim to focus on the advanced on-board systems for MALE UAVs. This kind of aircraft is not yet a mature concept, with very few operating machines and many projects in the development phase.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 November 2018

Pericles Panagiotou, Efstratios Giannakis, Georgios Savaidis and Kyros Yakinthos

The purpose of this paper is to present the preliminary design of a medium altitude long endurance (MALE) unmanned aerial vehicle (UAV), focusing on the interaction between the…

Abstract

Purpose

The purpose of this paper is to present the preliminary design of a medium altitude long endurance (MALE) unmanned aerial vehicle (UAV), focusing on the interaction between the aerodynamic and the structural design studies.

Design/methodology/approach

The classic layout theory was used, adjusted for the needs of unmanned aircraft, including aerodynamic calculations, presizing methods and CFD, to estimate key aerodynamic and stability coefficients. Considering the structural aspects, a combination of layout, finite element methods and custom parameterized design tools were used, allowing automatic reshapes of the skin and the internal structural parts, which are mainly made of composite materials. Interaction loops were defined between the aforementioned studies to optimize the performance of the aerial vehicle, maximize the aerodynamic efficiency and reduce the structural weight.

Findings

The complete design procedure of a UAV is shown, starting from the final stages of conceptual design, up to the point where the detail design and mechanical drawings initiated.

Practical implications

This paper presents a complete view of a design study of a MALE UAV, which was successfully constructed and flight-tested.

Originality/value

This study presents a complete, synergetic approach between the configuration layout, aerodynamic and structural aspects of a MALE UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 April 2020

Axel Yezeguelian and Askin T. Isikveren

When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated…

Abstract

Purpose

When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated to tactical medium-altitude long-endurance (MALE) operations appear to have significant potential when hybrid-electric propulsion and power systems (HEPPS) are implemented. Beginning with a baseline Eulair drone, this paper aims to examine the feasibility of retro-fitting with an Autarkic-Parallel-HEPPS architecture to enhance performance of the original single diesel engine.

Design/methodology/approach

In view of the low gravimetric specific energy performance attributes of batteries in the foreseeable future, the best approach was found to be one in which the Parallel-HEPPS architecture has the thermal engine augmented by an organic rankine cycle (ORC). For this study, with the outer mould lines fixed, the goal was to increase endurance without increasing the Eulair drone maximum take-off weight beyond an upper limit of +10%. The intent was to also retain take-off distance and climb performance or, where possible, improve upon these aspects. Therefore, as the focus of the work was on power scheduling, two primary control variables were identified as degree-of-hybridisation for useful power and cut-off altitude during the en route climb phase. Quasi-static methods were used for technical sub-space modelling, and these modules were linked into a constrained optimisation algorithm.

Findings

Results showed that an Autarkic-Parallel-HEPPS architecture comprising an ORC thermal energy recovery apparatus and high-end year-2020 battery, the endurance of the considered aircraft could be increased by 11%, i.e. a total of around 28 h, including de-icing system, in-flight recharge and emergency aircraft recovery capabilities. The same aircraft with the de-icing functionality removed resulted in a 20% increase in maximum endurance to 30 h.

Practical implications

Although the adoption of Series/Parallel-HEPPS only solutions do tend to generate questionable improvements in UAV operational performance, combinations of HEPPS with energy recovery machines that use, for example, an ORC, were found to have merit. Furthermore, such architectural solutions could also offer opportunity to facilitate additional functions like de-icing and emergency aircraft recovery during engine failure, which is either not available for UAVs today or prove to be prohibitive in terms of operational performance attributes when implemented using a conventional PPS approach.

Originality/value

This technical paper highlights a new degree of freedom in terms of power scheduling during climbing transversal flight operations. A control parameter of cut-off altitude for all types of HEPPS-based aircraft should be introduced into the technical decision-making/optimisation/analysis scheme and is seen to be a fundamental aspect when conducting trade-studies with respect to degree-of-hybridisation for useful power.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 October 2018

Cezary Gorniak, Zdobyslaw Jan Goraj and Bartosz Olszanski

The purpose of this research is a preliminary selection of wing section, which would be the best suited for PW-100 – a MALE class UAV of 600 kg weight. PW-100 will be used as a…

Abstract

Purpose

The purpose of this research is a preliminary selection of wing section, which would be the best suited for PW-100 – a MALE class UAV of 600 kg weight. PW-100 will be used as a testing platform in different institutions such as research institutes, industry research centers or universities of technology (phase 1) to enable the in-flight testing of various on-board systems (mobile radars, thermovision sensors, chemical sensors, antennas, teledetection systems and others). Untypical layout of PW-100 resulted from the plans of further development of this configuration for a military application.

Design/methodology/approach

Important role in the research described in this paper plays the selection of main wing section to fulfil the preliminary requirements regarding maximum lift coefficient, minimum drag, aerodynamic efficiency etc. Two different wing sections (R1082 and SA19) were tested in wind tunnel, both with flaps deflected at the range of 0°-30°. Experimental measurements were performed in the low turbulence wind tunnel with closed test section of 45 cm × 35 cm. Numerical simulations of the flow around the wing sections were performed using MSES code. Boundary conditions were assumed basing on the typical mission of PW-100 for flight altitude around 9,000 m, speed of 110 km/h what results in Re = 956,000.

Findings

Lift coefficients obtained from both experimental and numerical methods for single slatted airfoil SA19 are much higher than that of get for Ronch R1082 airfoil. PW-100 aircraft with SA19 airfoils will be able to be trimmed and fly at any altitude up to 9,000 m and with an arbitrary weight up to 600 kg. Aerodynamic characteristics of SA19 remain smoother and more predictable than that of R1082 airfoil. The very promising properties of SA19 airfoil are well known to the authors since the beginning of last decade when PW team worked together with IAI team on CAPECON project and now it was fully confirmed by this research.

Practical implications

It was confirmed that selection of the proper wing section for the special mission performed by UAV is of the highest importance decision to be taken at the preliminary design phase. Because there is a limited access to the base of technical parameters in many different UAVs classes and the classical analysis of trends cannot be fully applied, the wing section analysis, either experimental or numerical, must be performed. The situation is much worse than in the case of manned aircrafts because most of the modern UAVs are made of carbon or glass fiber, and therefore, there is no chance for analysis of trends.

Originality/value

This paper presents a very efficient method of assessing the influence of wing section on aircraft performance adopted for MALE class UAV, especially in an early stage of preliminary design process. The assessment is built mainly on three requirements: Maximum 2D lift coefficient for take-off configuration with flap deflected on 20 degrees should be greater than 2.4. Endurance factor CL1.5/CD for loitering conditions (Ma = 0.5 and CD0 = 0.008) should be greater than 110. The relative wing section thickness should be greater/equal than 19 per cent (it is required for high volume fuel tank located in the wings).

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 January 2021

P.S. Ramesh and J.V. Muruga Lal Jeyan

Amongst all classes of unmanned aircraft system (UAS), the rise of the Mini UAS class is the most dominant. Mini UASs are field-deployable systems and hence are not expected to…

Abstract

Purpose

Amongst all classes of unmanned aircraft system (UAS), the rise of the Mini UAS class is the most dominant. Mini UASs are field-deployable systems and hence are not expected to operate from a runway. Therefore, the operating terrain plays an important role in the deployment and employment of the Mini UAS. However, there is limited published work in this area. The impact of terrain is more critical for military applications than civilian applications. The purpose of this paper is to explore the implications of various types of terrain on the employment and deployment of Mini UAS.

Design/methodology/approach

This paper explores the implications of various types of terrain on the employment and deployment of Mini UAS.

Findings

Mini UAS with field deployable requirements is often launched within the tactical battle area in case of military applications or in close proximity to the intended target area for civilian applications. Due to the size and weight of the Mini UAS, launch and recovery becomes an important factor to be considered. Rotary wing or fixed-wing vertical take-off and landing configuration UAS overcomes the limitations of Mini UAS and hence it is the preferred option. Impact of the terrain is significantly higher for military applications as compared to civil applications. Mountain terrain is the most challenging for Mini UAS operations.

Practical implications

This paper will help the designers configure the UAS as per the operating terrain.

Originality/value

Terrain affects the deployment and employment of Mini UAS and the capabilities of the system with respect to terrain in which it is expected to operate must be considered during the design of a Mini UAS. The paper will help the designers configure the UAS as per the operating terrain.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 24 November 2023

Sezer Çoban

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain…

Abstract

Purpose

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain parameters (i.e. wing taper ratio and wing aspect ratio) while there are lower and upper constraints on these redesign parameters.

Design/methodology/approach

A mini UAV is produced in the Iskenderun Technical University (ISTE) Unmanned Aerial Vehicle Laboratory. Its complete wing can vary passively before the flight with respect to the result of the stochastic redesign of the wing while maximizing autonomous flight performance. Flight control system (FCS) parameters (i.e. gains of longitudinal and lateral proportional-integral-derivative controllers) and wing redesign parameters mentioned before are simultaneously designed to maximize autonomous flight performance index using a certain stochastic optimization strategy named as simultaneous perturbation stochastic approximation (SPSA). Found results are used while composing UAV flight simulations.

Findings

Using stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV over previously mentioned wing parameters and FCS, it obtained a maximum UAV autonomous flight performance.

Research limitations/implications

Permission of the directorate general of civil aviation in the Republic of Türkiye is essential for real-time UAV autonomous flights.

Practical implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach is very useful for improving any mini UAV autonomous flight performance cost index.

Social implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach succeeds confidence, highly improved autonomous flight performance cost index and easy service demands of mini UAV operators.

Originality/value

Creating a new approach to recover autonomous flight performance cost index (e.g. satisfying less settling time and less rise time, less overshoot during flight trajectory tracking) of a mini UAV and composing a novel procedure performing simultaneous mini UAV having passively morphing wing over certain parameters while there are upper and lower constraints and FCS design idea.

Article
Publication date: 4 January 2019

Anna Maria Mazur and Roman Domanski

The presented research is carried out in reaction to the soaring costs of fuel and tight control over environmental issues such as carbon dioxide emissions and noise. The purpose…

Abstract

Purpose

The presented research is carried out in reaction to the soaring costs of fuel and tight control over environmental issues such as carbon dioxide emissions and noise. The purpose of this paper is to study the feasibility of applying the environmental-friendly energy source in an unmanned aerial vehicles (UAVs) propulsion system.

Design/methodology/approach

Currently, the majority of UAVs are still powered by conventional combustion engines. An electric propulsion system is most commonly found in civilian micro and mini UAVs. The UAV classification is reviewed in this study. This paper focuses mainly on application of electric propulsion systems in UAVs. Investigated hybrid energy systems consist of fuel cells, Li-ion batteries, super-capacitors and photovoltaic (PV) modules. Current applications of fuel cell systems in UAVs are also presented.

Findings

The conducted research shows that hybridization allows for better energy management and operation of every energy source onboard the UAV within its limits. The hybrid energy system design should be created to maximize system efficiency without compromising the performance of the aircraft.

Practical implications

The presented study highlights the reduction of the energy consumption, necessary to perform the mission and maximizing of the endurance with simultaneous decrease in emissions and noise level.

Originality/value

The conducted research studies the feasibility of implementing the environmental-friendly hybrid electric propulsion systems in UAVs that offers high efficiency, reliability, controllability, lack of thermal and noise signature, thus, providing quiet and clean drive with low vibration levels. This paper highlights the main challenges and current research on fuel cell in aviation and draws attention to fuel cell – electric system modeling, hybridization and energy management.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 110