Search results

1 – 10 of over 94000
Article
Publication date: 1 July 2020

Hadi O. Al Haddad and Elie G. Hantouche

The purpose of this study is to develop an analytical model that is capable of predicting the behavior of shear endplate beam-column assemblies when exposed to fire, taking into…

Abstract

Purpose

The purpose of this study is to develop an analytical model that is capable of predicting the behavior of shear endplate beam-column assemblies when exposed to fire, taking into account the thermal creep effect.

Design/methodology/approach

An analytical model is developed and validated against finite element (FE) models previously validated against experimental tests in the literature. Major material and geometrical parameters are incorporated in the analysis to investigate their influence on the overall response of the shear endplate assembly in fire events.

Findings

The analytical model can predict the induced axial forces and deflections of the assembly. The results show that when creep effect is considered explicitly in the analysis, the beam undergoes excessive deformation. This deformation needs to be taken into account in the design. The results show the significance of thermal creep effect on the behavior of the shear endplate assembly as exposed to various fire scenarios.

Research limitations/implications

However, the user-defined constants of the creep equations cannot be applied to other connection types. These constants are limited to shear endplate connections having the material and geometrical parameters specified in this study.

Originality/value

The importance of the analytical model is that it provides a time-effective, simple and comprehensive technique that can be used as an alternative to the experimental tests and numerical methods. Also, it can be used to develop a design procedure that accounts for the transient thermal creep behavior of steel connections in real fire.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 July 2010

J.L.G. Janssen, J.J.H. Paulides and E.A. Lomonova

The purpose of this paper is to present novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular‐shaped charged surfaces. These…

Abstract

Purpose

The purpose of this paper is to present novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular‐shaped charged surfaces. These versatile expressions model that the field of triangular‐shaped permanent magnets (PMs) are very suitable to model skewed slotless machines.

Design/methodology/approach

The analytical 3D surface charge method is normally used to provide field expressions for PMs in free space. In this paper, the analytical surface charge integrals are analytically solved for charged right‐triangular surfaces. The resulting field is compared with that obtained by finite element modeling (FEM) and subsequently applied in two examples.

Findings

The comparison with FEM shows that the 3D analytical expressions are very accurate and exhibit very low‐numerical noise. These fast‐solving versatile expressions are therefore considered suitable to model triangular‐shaped or polyhedral‐shaped PMs.

Research limitations/implications

The surface charge method assumes that the relative permeability is equal to 1 and therefore soft‐magnetic materials need to be modeled using the method of images. The PMs are assumed to be ideal in terms of homogeneity, magnetization vector, permeability, demagnetization, and geometrical tolerances.

Practical implications

Many applications, such as the subclass of slotless synchronous linear actuators with a skewed PM structure and planar magnetic bearings, are very suitable to incorporate this modeling technique, since it enables the analysis of a variety of performance data.

Originality/value

As an addition to the common 3D analytical field expressions for cuboidal or cylindrical PMs, this paper presents novel expressions for magnets having triangular surfaces.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 November 2021

Yi Wang, Honghua Wang, Jingwei Zhang and Chao Tan

This paper aims to establish a piecewise Maxwell stress analytical model of bearingless switched reluctance motor (BSRM) for the full rotor angular positions. The proposed model

Abstract

Purpose

This paper aims to establish a piecewise Maxwell stress analytical model of bearingless switched reluctance motor (BSRM) for the full rotor angular positions. The proposed model varies from the existing models, which are only applicable to the partial-overlapping positions of stator and rotor poles. By extending the applicable rotor angular positions, this model provides a basic analytical model for the multi-phase excitation control of BSRM.

Design/methodology/approach

The full rotor angular positions are classified into the partial-overlapping positions and the non-overlapping positions. At first, two different air gap subdividing methods are proposed, respectively, for the two-position ranges. Then, different integration paths are selected accordingly. Furthermore, two approximate methods are presented to calculate the average flux density of each air gap subdivision. Finally, considering the mutual coupling between the two perpendicular radial suspension forces, a piecewise Maxwell stress analytical model is derived for the full rotor angular positions of BSRM.

Findings

A piecewise Maxwell stress analytical model of BSRM is built for the full rotor angular positions, and applicable to the multi-phase excitation mode of BSRM. For the partial-overlapping positions and the non-overlapping positions, two sets of air gap subdividing methods, integration paths and approximate calculation methods of air gap flux densities are proposed, respectively. The accuracy and reliability of the proposed model are verified by the finite element method.

Originality/value

The piecewise Maxwell stress analytical model of BSRM for the full rotor angular positions is proposed for the first time. The novel air gap subdividing methods, integration paths, approximate calculation methods of air gap flux densities and the coupling between the two radial suspension forces are adopted to improve the modeling accuracy. As the applicable range of rotor angular position is extended, this model overcomes the limitation of the existing models only for single-phase excitation mode and contributes to the accurate control of BSRM multi-phase excitation mode.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2008

J. Cros, L. Radaorozandry, J. Figueroa and P. Viarouge

The machine design with optimization method using analytical models is efficient to evaluate a large number of variables because these models are faster to solve. Nevertheless…

Abstract

Purpose

The machine design with optimization method using analytical models is efficient to evaluate a large number of variables because these models are faster to solve. Nevertheless, the validation of the final optimal solution by FE simulation often shows that some specification constraints are not verified. To solve the problem, it is possible to apply a hybrid approach for the design method while combining analytical methods and 3D FE simulations to compensate analytical model errors. The paper addresses this.

Design/methodology/approach

Each intermediate optimal solution is evaluated by FE simulation to quantify the analytical model errors. Correction coefficients are derived from this evaluation and another optimization process is performed. With this method, the convergence of the hybrid optimal design process is obtained with a limited number of FE simulations.

Findings

This study shows that it is possible to compensate errors of analytical models with a limited number of 3D field calculations during a global optimization design process. The 3D FE software validates the optimal solution but this solution is also a function of the sensitivity of analytical models that is not improved by the correction method.

Practical implications

This error compensation of analytical models using FE simulations can be applied for the design of a wide range of electromagnetic devices with optimization methods.

Originality/value

This paper presents a correction method that guaranteed the validity of the solution after the optimization process when analyzed with a FE software.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 November 2021

Zakarya Djelloul Khedda, Kamel Boughrara, Frédéric Dubas, Baocheng Guo and El Hadj Ailam

Thermal analysis of electrical machines is usually performed by using numerical methods or lumped parameter thermal networks depending on the desired accuracy. The analytical

Abstract

Purpose

Thermal analysis of electrical machines is usually performed by using numerical methods or lumped parameter thermal networks depending on the desired accuracy. The analytical prediction of temperature distribution based on the formal resolution of thermal partial differential equations (PDEs) by the harmonic modeling technique (or the Fourier method) is uncommon in electrical machines. Therefore, this paper aims to present a two-dimensional (2D) analytical model of steady-state temperature distribution for permanent-magnet (PM) synchronous machines (PMSM) operating in generator mode.

Design/methodology/approach

The proposed model is based on the multi-layer models with the convolution theorem (i.e. Cauchy’s product theorem) by using complex Fourier’s series and the separation of variables method. This technique takes into the different thermal conductivities of the machine parts. The heat sources are determined by calculating the different power losses in the PMSM with the finite-element method (FEM).

Findings

To validate the proposed analytical model, the analytical results are compared with those obtained by thermal FEM. The comparisons show good results of the proposed model.

Originality/value

A new 2D analytical model based on the PDE in steady-state for full prediction of temperature distribution in the PMSM takes into account the heat transfer by conduction, convection and radiation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 September 2009

P. Enciu, F. Wurtz, L. Gerbaud and B. Delinchant

The purpose of this paper is to illustrate automatic differentiation (AD) as a new technology for the device sizing in electromagnetism by using gradient constrained optimization…

Abstract

Purpose

The purpose of this paper is to illustrate automatic differentiation (AD) as a new technology for the device sizing in electromagnetism by using gradient constrained optimization. Component architecture for the design of engineering systems (CADES) framework, previously described, is presented here with extended features.

Design/methodology/approach

The paper is subject to further usage for optimization of AD (also named algorithmic differentiation) which is a powerful technique that computes derivatives of functions described as computer programs in a programming language like C/C++, FORTRAN.

Findings

Indeed, analytical modeling is well suited regarding optimization procedure, but the modeling of complex devices needs sometimes numerical formulations. This paper then reviews the concepts implemented in CADES which aim to manage the interactions of analytical and numerical modeling inside of gradient‐based optimization procedure. Finally, the paper shows that AD has no limit for the input program complexity, or gradients accuracy, in the context of constrained optimization of an electromagnetic actuator.

Originality/value

AD is employed for a large and complex numerical code computing multidimensional integrals of functions. Thus, the paper intends to prove the AD capabilities in the context of electromagnetic device sizing by means of gradient optimization. The code complexity as also as the implications of AD usage may stand as a good reference for the researchers in this field area.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 May 2023

Kuleni Fekadu Yadeta, Sudath C. Siriwardane and Tesfaye Alemu Mohammed

Reliable estimations of the extent of corrosion and time required to reach specific safety limits are crucial for assessing the reliability of aging reinforced concrete (RC…

Abstract

Purpose

Reliable estimations of the extent of corrosion and time required to reach specific safety limits are crucial for assessing the reliability of aging reinforced concrete (RC) bridges. Engineers and decision-makers can use these figures to plan suitable inspection and maintenance operations.

Design/methodology/approach

Analytical, empirical and numerical approaches for estimating the service life of corroded RC structures were presented and compared. The concrete cover cracking times, which were predicted by the previously proposed analytical models, were compared with the experimentally obtained cracking times to identify the model/s for RC bridges. The shortcomings and limitations of the existing models are discussed.

Findings

The empirical models typically depend on the rate of corrosion, diameter of steel reinforcement and concrete cover depth and based on basic mathematical formula. In contrast, the analytical and numerical models contain the strength and stiffness properties of concrete as well as type of corrosion products and incorporate more complex mechanical factors. Four existing analytical models were analyzed and their performance was evaluated against existing experimental data in literature. All the considered analytical models were assumed thick-walled cylinder models. The maximum difference between observed cracking time from different test data and calculated cracking time using the developed models is 36.5%. The cracking times extend with increase in concrete cover and decrease with corrosion current density. The development of service life prediction models that considers factors such as heterogeneity of concrete, non-uniform corrosion along rebar, rust production rate and a more accurate representation of the corrosion accommodating region are some of the areas for further research.

Research limitations/implications

Outcome of this paper partially bridge the gap between theory and practice, as it is the basis to estimate the serviceability of corrosion-affected RC structures and to propose maintenance and repair strategies for the structures. For structural design and evaluation, the crack-width criterion is the greatest practical importance, and structural engineers, operators and asset managers should pay close attention to it. Additionally, repair costs for corrosion-induced serviceability failures, particularly concrete cracking and spalling, are significantly higher than those for strength failures. Therefore, to optimize the maintenance cost of RC structures, it is essential to precisely forecast the serviceability of corrosion-affected concrete structures. The lifespan of RC structures may be extended by timely repairs. This helps stake holders to manage the resources.

Practical implications

In order to improve modeling of corrosion-induced cracking, important areas for future research were identified. Heterogeneity properties of concrete, concept of porous zone (accommodation effect of pores should be quantified), actual corrosion morphology (non-uniform corrosion along the length of rebar), interaction between sustain load and corrosions were not considered in existing models. Therefore, this work suggested for further researches should consider them as input and develop models which have best prediction capacity.

Social implications

This work has positive impact on society and will not affect the quality of life. Predicting service life of structures is necessary for maintenance and repair strategy plans. Optimizing maintenance strategy is used to extend asset life, reduce asset failures, minimize repair cost, and improve health and safety for society.

Originality/value

The degree of accuracy and applicability of the existing service life prediction models used for RC were assessed by comparing the predicted cracking times with the experimentally obtained times reported in the literature. The shortcomings of the models were identified and areas where further research is required are recommended.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 October 2018

Amr M.I. Sweedan, Hothifa N. Rojob and Khaled M. El-Sawy

The purpose of this paper is to introduce a closed-form analytical solution to evaluate the nominal moment capacity and associated deflections of steel-FRP beam systems. The…

Abstract

Purpose

The purpose of this paper is to introduce a closed-form analytical solution to evaluate the nominal moment capacity and associated deflections of steel-FRP beam systems. The proposed solution takes into consideration the partial composite behavior resulting from the interfacial contact and slip between the subcomponents of the system.

Design/methodology/approach

The partial composite action theory was used to develop an elastic analytical solution for the deflection of simply supported composite steel-FRP beams subjected to a mid-span point load. The solution takes into consideration the partial composite behavior of the system that arises from the interlayer slip at the steel-FRP interface.

Findings

The developed analytical model is used to predict the nominal moment capacity of the composite beam and the load value at the onset of yielding in the steel subcomponent of the section. The distribution of shear forces induced in the steel fasteners due to the interfacial slip is also obtained analytically. A comparative study is conducted by comparing the analytical results to their counterparts resulting from finite element modeling of the composite steel-FRP system. The agreement between analytical results and finite element predictions validates the accuracy of the derived analytical solution for partial composite steel-FRP beams.

Research limitations/implications

The proposed solution applies only to the FRP strips and 6 mm steel bolts used in the study.

Originality/value

Recent studies revealed a promising efficiency of using mechanically fastened hybrid FRP sheets in strengthening steel beams. A major advantage of this technique is the ductile behavior of the steel-FRP system. The current paper introduces a closed-form analytical solution to evaluate the nominal moment capacity and associated deflections of steel-FRP beam systems. Forces developed at the steel-FRP interface due to the relative slip between both components are considered in the proposed analytical solution.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 2019

Ajay Kumar Singh

This study aims to develop a compact analytical models for undoped symmetric double-gate MOSFET based on carrier approach. Double-Gate (DG) MOSFET is a newly emerging device that…

Abstract

Purpose

This study aims to develop a compact analytical models for undoped symmetric double-gate MOSFET based on carrier approach. Double-Gate (DG) MOSFET is a newly emerging device that can potentially further scale down CMOS technology owing to its excellent control of short channel effects, ideal subthreshold slope and free dopant-associated fluctuation effects. DG MOSFET is of two types: the symmetric DG MOSFET with two gates of identical work functions and asymmetric DG MOSFET with two gates of different work functions. To fully exploit the benefits of DG MOSFETs, the body of DG MOSFETs is usually undoped because the undoped body greatly reduces source and drain junction capacitances, which enhances the switching speed. Highly accurate and compact models, which are at the same time computationally efficient, are required for proper modeling of DG MOSFETs.

Design/methodology/approach

This paper presents a carrier-based approach to develop a compact analytical model for the channel potential, threshold voltage and drain current of a long channel undoped symmetric DG MOSFETs. The formulation starts from a solution of the 2-D Poisson’s equation in which mobile charge term has been included. The 2-D Poisson’s equation in rectangular coordinate system has been solved by splitting the total potential into long-channel (1-D Poisson’s equation) and short-channel components (remnant 2-D differential equation) in accordance to the device physics. The analytical model of the channel potential has been derived using Boltzmann’s statistics and carrier-based approach.

Findings

It is shown that the metal gate suppresses the center potential more than the poly gate. The threshold voltage increases with increasing metal work function. The results of the proposed models have been validated against the Technology Computer Aided Design simulation results with close agreement.

Originality/value

Compact Analytical models for undoped symmetric double gate MOSFETs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 May 2011

Marie de Rochambeau, Mohamed Ichchou and Bernard Troclet

The purpose of this paper is to extend statistical energy analysis (SEA)‐like modeling to fluid‐structure coupled systems.

Abstract

Purpose

The purpose of this paper is to extend statistical energy analysis (SEA)‐like modeling to fluid‐structure coupled systems.

Design/methodology/approach

An equivalent approach of aerodynamic loads is applied to a SEA‐like modeling of a panel‐cavity coupled system with rain‐on‐the‐roof excitation. Two aerodynamic excitations are presented: turbulent boundary layer (TBL) and diffuse field excitation. The energetic description of the coupled system is studied with both aerodynamic excitations, taking in account the coincidence effects. In order to extent the approach to more general systems, some parameters of the coupled system are also modified and the accuracy of the coupled system modeling is investigated.

Findings

The boundary conditions of the panel and the coupling strength between the panel and the cavity have been modified. As it was expected, the accuracy of equivalent approach is shown to be independent of such modifications. The interest of such calculation is thus highlighted: modelings of systems and aerodynamic excitations are independent, and can be treated separately.

Originality/value

This result is interesting in the space industry, for launch vehicles are excited by different types of random excitations. Those excitations can be modeled by SEA‐like with low calculation time and memory and applied to a unique system modeling.

Details

Engineering Computations, vol. 28 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 94000