Search results

1 – 10 of over 16000
Article
Publication date: 1 February 1978

M.W. de Jong‐Hofman

The first part of the paper describes the results of an extensive search into two factors which effect, to a high degree, the efficiency of online information retrieval: (i) the…

Abstract

The first part of the paper describes the results of an extensive search into two factors which effect, to a high degree, the efficiency of online information retrieval: (i) the manner by which classification codes and keywords are chosen as a means of retrieval by the reviewers of the reference work (ii) the degree in which papers with comparable contents are accorded similar keywords. The influence of these two factors on the practical results is shown by the example of extensive searches: these searches were done manually as well as online. It was concluded that the efficiency of the assigned keywords was very low, owing to their insufficient accuracy and the large number of synonyms, spellings and other words that there may be to express one idea. The purpose of the analysis as described in the second part of the paper is to examine the possibility of finding a good search strategy, in spite of the low efficiency of the assigned keywords, that costs little and has a high efficiency factor. Therefore, a three‐fold situation is examined: (i) the relationship of the search strategy to (ii) the factors affecting cost, and (iii) the efficiency of retrieval. The problems arising in choosing a search strategy are examined; 14 different methods were selected from the large number of possibilities to formulate a search. A method of calculating the factors which affect the connect‐time cost and the offprint costs is worked out. The various strategies, employed to achieve the greatest improvements in cost and efficiency, include classification codes and keywords (subject headings and free terms). This procedure was carried out via an ESA terminal. The results are presented in the form of tables comparing the size of the factors affecting the cost, the judged cost per relevant item and the efficiency of retrieval. The conclusion is that the best search consists of using the classification codes, including the subject, coupled with some carefully selected free terms, for the simplest method, the lowest cost and the highest efficiency of retrieval.

Details

Online Review, vol. 2 no. 2
Type: Research Article
ISSN: 0309-314X

Article
Publication date: 14 March 2023

Jinyu Li, Hangyu Yan, Yunfeng Ni, Linlin Fu and Yunchu Yang

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of…

Abstract

Purpose

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of electrical heating fabric and the thermal comfort of human skin at low temperature.

Design/methodology/approach

The combined model of skin-electrical heating fabric system was established to simulate human skin tissue wearing electrical heating clothing. A series of simulation experiments are designed on the basis of verifying the effectiveness of the combined model. The temperature distribution inside the combined model and on the skin surface under different heating powers is simulated and analyzed. At the same time, the influence of ambient temperature on the thermal performance of electrical heating fabric was explored.

Findings

The skin model with blood vessels reflected the temperature change of human skin wearing electrical heating clothing. The higher the heating power of the electrical heating fabric was, the greater the temperature of the skin surface changed, the faster the temperature rose and the longer the time required to reach the stable state would be. After the heating element was electrified, it had the greatest effect on the average temperature of the epidermis and dermis, had smaller effect on the average temperature of subcutaneous layer and had little effect on the temperature of blood vessels. When the heating power was the same, the higher the ambient temperature was, the more obvious the heating effect of electrical heating fabric was. Electrical heating fabrics with different heating powers were suitable for different ambient temperature ranges.

Originality/value

A reasonable and effective evaluation method for the thermal comfort of electrical heating fabric was provided by establishing the skin model and combined model of the skin-electrical heating fabric system. It provides a reference for the design and application of electrical heating clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 February 2009

Ozan Kayacan and Ender Yazgan Bulgun

The purpose of this paper is to investigate the concept of “electrically conductive fabrics”. The primer applications that import electrical conductivity properties to textiles…

1210

Abstract

Purpose

The purpose of this paper is to investigate the concept of “electrically conductive fabrics”. The primer applications that import electrical conductivity properties to textiles and clothing are summarized. Also the heated fabric panels produced by steel yarns are evaluated. Single and multi‐ply steel fabrics are applied to electrical current and their heating behaviors are observed and compared.

Design/methodology/approach

The integration of electronic components with textiles to create very smart structures is getting more and more attention in recent years. Most of the textile materials are electrical insulators. Hence, various types of fibers and fabrics having reasonably good electrical conductivity are required especially for electronically functional apparel products. The textile‐based materials being flexible and easily workable are the most preferred one in such cases. In this study, the steel yarns are placed in the fabric construction owing to their flexible characteristics. The heating panels used in this study are produced by conventional textile processes and applied to electrical current. For this purpose, an electronic circuit that contains textile‐based warming panels connected to a power supply, has been developed.

Findings

The heated steel fabric panels with different number of plies provide different heating degree intervals owing to the different resistance levels, Therefore, in the applications of textile‐based heating elements it is suggested that the electrical characterization of conductive materials should be examined and the materials that have the most appropriate electrical resistance characteristic must be applied. Furthermore, in the circuits used for heating function, the current amount depends on the electrical features of heating structures. Consequently, the pads with different plies have various efficient heating in point of time. It is recommended that the appropriate heating pad dimensions, ply or conductive yarn amounts and sufficient power supply conditions should be evaluated and chosen according to the desired heating level.

Originality/value

Electrically conductive stainless steel yarns are processed to form a heating panel that can be used within an electronic circuit as a warming mechanism.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 March 2022

Jared Allison, John Pearce, Joseph Beaman and Carolyn Seepersad

Recent work has demonstrated the possibility of selectively sintering polymer powders with radio frequency (RF) radiation as a means of rapid, volumetric additive manufacturing…

Abstract

Purpose

Recent work has demonstrated the possibility of selectively sintering polymer powders with radio frequency (RF) radiation as a means of rapid, volumetric additive manufacturing. Although RF radiation can be used as a volumetric energy source, non-uniform heating resulting from the sample geometry and electrode configuration can lead to adverse effects in RF-treated samples. This paper aims to address these heating uniformity issues by implementing a computational design strategy for doped polymer powder beds to improve the RF heating uniformity.

Design/methodology/approach

Two approaches for improving the RF heating uniformity are presented with the goal of developing an RF-assisted additive manufacturing process. Both techniques use COMSOL Multiphysics® to predict the temperature rise during simulated RF exposure for different geometries. The effectiveness of each approach is evaluated by calculating the uniformity index, which provides an objective metric for comparing the heating uniformity between simulations. The first method implements an iterative heuristic tuning strategy to functionally grade the electrical conductivity within the sample. The second method involves reorienting the electrodes during the heating stage such that the electric field is applied in two directions.

Findings

Both approaches are shown to improve the heating uniformity and predicted part geometry for several test cases when applied independently. However, the greatest improvement in heating uniformity is demonstrated by combining the approaches and using multiple electrode orientations while functionally grading the samples.

Originality/value

This work presents an innovative approach for overcoming RF heating uniformity issues to improve the resulting part geometry in an RF-assisted, volumetric additive manufacturing method.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 March 2016

Huiju Park, Soo-kyung Hwang, Joo-Young Lee, Jintu Fan and Youngjin Jeong

This paper investigated the impact of the distance of the heating unit from the body in a multi-layered winter clothing system on effective thermal insulation and heating

662

Abstract

Purpose

This paper investigated the impact of the distance of the heating unit from the body in a multi-layered winter clothing system on effective thermal insulation and heating efficiency.

Design/methodology/approach

To identify changes in the thermal insulation and heating efficiency of electrical heating in different layers inside a winter clothing ensemble, a series of thermal manikin tests was conducted. A multi-layered winter ensemble with and without activation of a heating unit was tested on the thermal manikin under two different ambient temperature conditions (10°C and -5°C).

Findings

Results show that the effective thermal insulation of test ensembles increased by 5-7% with the activation of the heating unit compared to that without the activation. The closer the heating unit to the body, the higher the effective thermal insulation was in both ambient temperature conditions. This trend was more significant at lower ambient temperature.

Research limitations/implications

The results of this study indicate that providing electric heating next to the skin is the most effective in increasing effective thermal insulation and decreasing body heat loss in both ambient temperature (-5°C and 10°C). This trend was more remarkable in colder environment at -5°C of ambient temperature as evidenced by sharp decrease in heating efficiency and effective thermal insulation with an increase in distance between the manikin skin and heating unit at -5°C of ambient temperature compared to at 10°C of ambient temperature.

Practical implications

Based on the results, it is expected that proximity heating next to the skin, in cold environment, may reduce the weight and size of the battery for the heating unit because of the higher efficiency of electric heating and the potentially immediate perception of warmth supported by the greatest increase in effective thermal insulation, as well as the lowest heat loss that comes with activation of heating on the first layer in cold environment.

Originality/value

The finding of this study provides guidelines to sportswear designers, textile scientists, sports enthusiasts, and civilians who consider electric heating benefits for improved thermal comfort and safety in cold environments, especially in the areas of outdoor and winter sports and in military service. The results of this study indicate that providing electric heating next to the skin is the most effective in increasing effective thermal insulation and decreasing body heat loss in both ambient temperature (-5°C and 10°C).

Details

International Journal of Clothing Science and Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0955-6222

Article
Publication date: 2 April 2024

Chenyu Zhang, Hongtao Xu and Yaodong Da

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal…

22

Abstract

Purpose

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal protection system for the WTs flanges using an electrical heat-tracing element.

Design/methodology/approach

A three-dimensional model and the Poly-Hexacore mesh structure are used, and the fluid-solid coupling method was validated and then deployed to analyze the heat transfer and convection process. Intra-volumetric heat sources are applied to represent the heat generated by the heating element, and the dynamic boundary conditions are considered. The steady temperature and temperature uniformity of the flange are the assessment criteria for the thermal protection performance of the heating element.

Findings

Enlarging the heating area and increasing the heating power improved the flange's temperature and temperature uniformity. A heating power of 4.9 kW was suitable for engineering applications with the lowest temperature nonuniformity. Compared with continuous heating, the increased temperature nonuniformity was buffered, and the electrical power consumption was reduced by half using pulse heating. Pulse heating time intervals of 1, 3 and 4 h were determined for the spring, autumn and winter, respectively.

Originality/value

The originality of this study is to propose a novel electrical heat-tracing thermal protection system for the WTs flanges. The effect of different arrangements, heating powers and heating strategies was studied, by which the theoretical basis is provided for a stable and long-term utilization of the WT flange.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2023

Liang Ma and Jun Li

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of…

Abstract

Purpose

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of research for each heating mode and identify their limitations. Further, the study provides insights into the optimization of intelligent temperature control algorithms and design considerations for intelligent cold-proof clothing.

Design/methodology/approach

This article presents a classification of active heating systems based on five different heating principles: electric heating system, solar heating system, phase-change material (PCM) heating system, chemical heating system and fluid/air heating system. The systems are analyzed and evaluated in terms of heating principle, research advancement, scientific challenges and application potential in the field of cold-proof clothing.

Findings

The rational utilization of active heating modes enhances the thermal efficiency of cold-proof clothing, resulting in enhanced cold-resistance and reduced volume and weight. Despite progress in the development of the five prevalent heating modes, particularly with regard to the improvement and advancement of heating materials, the current integration of heating systems with cold-proof clothing is limited to the torso and limbs, lacking consideration of the thermal physiological requirements of the human body. Additionally, the heating modes of each system tend to be uniform and lack differentiation to meet the varying cold protection needs of various body parts.

Research limitations/implications

The effective application of multiple heating modes helps the human body to maintain a constant body temperature and thermal equilibrium in a cold environment. The research of heating mode is the basis for realizing the temperature control of cold-proof clothing and provides an effective guarantee for the future development of the intelligent algorithms for temperature control of non-uniform heating of body segments.

Practical implications

The integration of multiple heating modes ensures the maintenance of a constant body temperature and thermal balance for the wearer in cold environments. The research of heating modes forms the foundation for the temperature regulation of cold-proof clothing and lays the groundwork for the development of intelligent algorithms for non-uniform heating control of different body segments.

Originality/value

The present article systematically reviews five active heating modes suitable for use in cold-proof clothing and offers guidance for the selection of heating systems in future smart cold-proof clothing. Furthermore, the findings of this research provide a basis for future research on non-uniform heating modes that are aligned with the thermal physiological needs of the human body, thus contributing to the development of cold-proof clothing that is better suited to meet the thermal needs of the human body.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 August 2014

Wai Ming To, Hon Kit Hung and Wai Leung Chung

The purpose of this paper is to evaluate the energy, economic and environmental performance of commercial water heating systems in Hong Kong special administrative region (SAR)…

Abstract

Purpose

The purpose of this paper is to evaluate the energy, economic and environmental performance of commercial water heating systems in Hong Kong special administrative region (SAR), China.

Design/methodology/approach

The research team contacted 50 facilities managers in Hong Kong, and 16 of them agreed to participate in this territorial-wide survey. The overall efficiency of different water heating systems was determined through measurements of inlet water temperatures, outlet steam/water properties, the amount of steam/water produced and the amount of energy consumed. The cost effectiveness and the amount of greenhouse gases produced per megajoule (MJ) output were also determined.

Findings

Results show that electric water heating systems had the highest mean overall efficiency, followed by gas- and oil-fired systems. However, the difference between the mean overall efficiency of the three types of water heating systems was not statistically significant, as the systems had been inspected and maintained regularly. Oil-fired systems were found to be the most cost-effective when taking fuel prices into consideration. Environmental analysis showed that gas-fired systems produced the least amount of greenhouse gases per MJ output.

Originality/value

Water heating is one of the major uses of energy in buildings. Hence, the efficiency of a water heating system can have a significant effect on the overall performance of a building. This paper not only provides insight on the energy performance but it also evaluates the economic and environmental performance of water heating systems.

Details

Journal of Facilities Management, vol. 12 no. 4
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 4 October 2011

Sandra Couto, Joao B.L.M. Campos and Tiago S. Mayor

The purpose of this paper is to investigate the heat transfer on an alpine‐climbing mitt featuring an electrical heating multilayer, in order to provide information for the…

Abstract

Purpose

The purpose of this paper is to investigate the heat transfer on an alpine‐climbing mitt featuring an electrical heating multilayer, in order to provide information for the optimization of its thermal performance.

Design/methodology/approach

A numerical model was developed to simulate the heat transfer across an electricalheated alpine mitt. The model was used to study the heat losses as a function of the environmental conditions, to optimise the positioning of the heating elements, to determine the optimal power input to the heating system, to estimate the battery capacity requirements and to assess the effect of low‐emissivity surfaces.

Findings

The results show that: the heating elements assure approximately constant temperatures across the skin provided they are not more than 6‐7 mm apart; the use of low‐emissivity surfaces facing the skin can reduce the total heat loss by 8‐36 per cent (for air layer thicknesses in the range 10−3 to 10−2 m) and to increase the skin temperature during the transient operation of the heating multilayer; the heat losses from the mitt are practically independent of the chosen heating power; and a battery capacity of 4 A h assures active temperature regulation for more than 18‐23 h.

Practical implications

By enhancing the thermal performance of an electrical heating mitt, the use of low‐emissivity surfaces (facing the skin) can favour the thermal comfort perception of its user.

Originality/value

The influence of several parameters on the thermal performance of an electricalheated mitt is analysed and discussed. The findings are relevant for improving the performance of existing electrical heating garments.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 February 2020

Xianzhi Mei, Yaping Chen, Jiafeng Wu and Xiaoyu Zhou

Conventional electric heaters mostly use U-shaped electric heating tubes and the hollow tube electric heaters are new type ones that rely on the heat transfer tubes as heating

Abstract

Purpose

Conventional electric heaters mostly use U-shaped electric heating tubes and the hollow tube electric heaters are new type ones that rely on the heat transfer tubes as heating elements. However, in the original design, the fluid flows through the annular gaps between the shell wall and the supporting plates, the chambers between supporting plates are generally stagnant zones. The purpose of study is to overcome these deficiencies.

Design/methodology/approach

A modified approach is proposed in which the heating tubes are surrounded by holes on the supporting plates, thus the stagnant flow zone can be eliminated and the heating surfaces of both inside and outside the tube can be fully used. Numerical simulations were carried out on four schemes of hollow tube electric heaters, i.e. plate blocked, countercurrent, parallel and split. The results show that the two schemes of parallel and split can reduce the temperature difference between the two sides of the fixed tube plate, and thus reduce thermal stress and prolong the service life.

Findings

The split scheme of electric heater has the highest comprehensive index, moderate heat transfer coefficient and minimum pressure drop on the shell side. Its average heat transfer coefficient and comprehensive index are, respectively, 15.7% and 52.9% higher and its average pressure drop and tube wall temperature are, respectively, 57.6% and 19 K lower than those of the original plate blocked scheme, thus it can be recommended as the best scheme of the hollow tube electric heaters.

Originality/value

Based on the original design of hollow tube electric heater with plate blocked scheme, three plate perforated schemes were proposed and investigated. The thermal and flow features of the four schemes were compared in terms of heat transfer coefficient, pressure drop and comprehensive index ho·Δpo−1/3. The split scheme can reduce the temperature difference between two sides of the fixed tube plate with reduced thermal stress. It has moderate tube wall temperature and heat transfer coefficient, the smallest shell side pressure drop and the highest comprehensive index ho·Δpo−1/3, and it can be recommended as the optimal scheme.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 16000