Search results

1 – 10 of over 7000
Article
Publication date: 14 March 2023

Jinyu Li, Hangyu Yan, Yunfeng Ni, Linlin Fu and Yunchu Yang

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of…

Abstract

Purpose

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of electrical heating fabric and the thermal comfort of human skin at low temperature.

Design/methodology/approach

The combined model of skin-electrical heating fabric system was established to simulate human skin tissue wearing electrical heating clothing. A series of simulation experiments are designed on the basis of verifying the effectiveness of the combined model. The temperature distribution inside the combined model and on the skin surface under different heating powers is simulated and analyzed. At the same time, the influence of ambient temperature on the thermal performance of electrical heating fabric was explored.

Findings

The skin model with blood vessels reflected the temperature change of human skin wearing electrical heating clothing. The higher the heating power of the electrical heating fabric was, the greater the temperature of the skin surface changed, the faster the temperature rose and the longer the time required to reach the stable state would be. After the heating element was electrified, it had the greatest effect on the average temperature of the epidermis and dermis, had smaller effect on the average temperature of subcutaneous layer and had little effect on the temperature of blood vessels. When the heating power was the same, the higher the ambient temperature was, the more obvious the heating effect of electrical heating fabric was. Electrical heating fabrics with different heating powers were suitable for different ambient temperature ranges.

Originality/value

A reasonable and effective evaluation method for the thermal comfort of electrical heating fabric was provided by establishing the skin model and combined model of the skin-electrical heating fabric system. It provides a reference for the design and application of electrical heating clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 October 2011

Sandra Couto, Joao B.L.M. Campos and Tiago S. Mayor

The purpose of this paper is to investigate the heat transfer on an alpine‐climbing mitt featuring an electrical heating multilayer, in order to provide information for the…

Abstract

Purpose

The purpose of this paper is to investigate the heat transfer on an alpine‐climbing mitt featuring an electrical heating multilayer, in order to provide information for the optimization of its thermal performance.

Design/methodology/approach

A numerical model was developed to simulate the heat transfer across an electricalheated alpine mitt. The model was used to study the heat losses as a function of the environmental conditions, to optimise the positioning of the heating elements, to determine the optimal power input to the heating system, to estimate the battery capacity requirements and to assess the effect of low‐emissivity surfaces.

Findings

The results show that: the heating elements assure approximately constant temperatures across the skin provided they are not more than 6‐7 mm apart; the use of low‐emissivity surfaces facing the skin can reduce the total heat loss by 8‐36 per cent (for air layer thicknesses in the range 10−3 to 10−2 m) and to increase the skin temperature during the transient operation of the heating multilayer; the heat losses from the mitt are practically independent of the chosen heating power; and a battery capacity of 4 A h assures active temperature regulation for more than 18‐23 h.

Practical implications

By enhancing the thermal performance of an electrical heating mitt, the use of low‐emissivity surfaces (facing the skin) can favour the thermal comfort perception of its user.

Originality/value

The influence of several parameters on the thermal performance of an electricalheated mitt is analysed and discussed. The findings are relevant for improving the performance of existing electrical heating garments.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 March 2016

Huiju Park, Soo-kyung Hwang, Joo-Young Lee, Jintu Fan and Youngjin Jeong

This paper investigated the impact of the distance of the heating unit from the body in a multi-layered winter clothing system on effective thermal insulation and heating

662

Abstract

Purpose

This paper investigated the impact of the distance of the heating unit from the body in a multi-layered winter clothing system on effective thermal insulation and heating efficiency.

Design/methodology/approach

To identify changes in the thermal insulation and heating efficiency of electrical heating in different layers inside a winter clothing ensemble, a series of thermal manikin tests was conducted. A multi-layered winter ensemble with and without activation of a heating unit was tested on the thermal manikin under two different ambient temperature conditions (10°C and -5°C).

Findings

Results show that the effective thermal insulation of test ensembles increased by 5-7% with the activation of the heating unit compared to that without the activation. The closer the heating unit to the body, the higher the effective thermal insulation was in both ambient temperature conditions. This trend was more significant at lower ambient temperature.

Research limitations/implications

The results of this study indicate that providing electric heating next to the skin is the most effective in increasing effective thermal insulation and decreasing body heat loss in both ambient temperature (-5°C and 10°C). This trend was more remarkable in colder environment at -5°C of ambient temperature as evidenced by sharp decrease in heating efficiency and effective thermal insulation with an increase in distance between the manikin skin and heating unit at -5°C of ambient temperature compared to at 10°C of ambient temperature.

Practical implications

Based on the results, it is expected that proximity heating next to the skin, in cold environment, may reduce the weight and size of the battery for the heating unit because of the higher efficiency of electric heating and the potentially immediate perception of warmth supported by the greatest increase in effective thermal insulation, as well as the lowest heat loss that comes with activation of heating on the first layer in cold environment.

Originality/value

The finding of this study provides guidelines to sportswear designers, textile scientists, sports enthusiasts, and civilians who consider electric heating benefits for improved thermal comfort and safety in cold environments, especially in the areas of outdoor and winter sports and in military service. The results of this study indicate that providing electric heating next to the skin is the most effective in increasing effective thermal insulation and decreasing body heat loss in both ambient temperature (-5°C and 10°C).

Details

International Journal of Clothing Science and Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0955-6222

Article
Publication date: 26 September 2023

Alexander Sergeevich Tonkoshkur and Alexander Vladimirovich Ivanchenko

The purpose of this study is to model the dependences of the output voltage, temperature, current and electrical power dissipation of a voltage limiter based on a two-layer

Abstract

Purpose

The purpose of this study is to model the dependences of the output voltage, temperature, current and electrical power dissipation of a voltage limiter based on a two-layer varistor–posistor structure on time and analysis the influence of operating modes and design parameters of such a limiter on these characteristics.

Design/methodology/approach

The behavior of the limiting voltage, temperature and other parameters of the voltage limiter when an input constant overvoltage is applied is studied by the simulation method. The voltage limiter was a two-layer construction. One layer was a zinc oxide ceramic varistor. The second layer was a posistor polymer composite with a nanocarbon filler of PolySwitch technology.

Findings

The output voltage across the varistor layer decreases and reaches some fixed value related to its breakdown voltage after applying a constant overvoltage to the structure over time. The temperature of the structure increases to some steady state value, while the current decreases significantly. The amplitude of the transient current pulse increases, its duration and energy of the transient process decrease with increasing overvoltage. An increase in the internal resistance of the overvoltage source can cause a decrease in the amplitude and an increase in the duration of transient currents.

Originality/value

The ranges of values for the activation energy of conduction of the varistor layer in weak electric fields, the intensity of heat exchange between the structure under study and the environment are determined to ensure the stable operation of this structure as a voltage limiter. The results obtained make it possible to select the necessary parameters of the indicated structures to ensure the required operating modes of the voltage limiter for various applications.

Article
Publication date: 8 June 2012

Tony W.H. Sheu, S.H. Kuo and R.K. Lin

A convection‐diffusion‐reaction scheme is proposed in this study to simulate the high gradient electroosmotic flow behavior in microchannels. The equations governing the total…

Abstract

Purpose

A convection‐diffusion‐reaction scheme is proposed in this study to simulate the high gradient electroosmotic flow behavior in microchannels. The equations governing the total electric field include the Laplace equation for the effective electrical potential and the Poisson‐Boltzmann equation for the electrical potential in the electric double layer.

Design/methodology/approach

Mixed electroosmotic/pressure‐driven flow in a straight microchannel is studied with the emphasis on the Joule heat in the equations of motion. The nonlinear behaviors resulting from the hydrodynamic, thermal and electrical three‐field coupling and the temperature‐dependent fluid viscosity, thermal conductivity, electrical permittivity, and conductivity of the investigated buffer solution are analyzed.

Findings

The solutions computed from the employed flux discretization scheme for the hydrodynamic, thermal and electric field equations have been verified to have good agreement with the analytical solution. Parametric studies have been carried out by varying the electrical conductivity at the fixed zeta potential and varying the zeta potential at the fixed electrical conductivity.

Originality/value

Investigation is also addressed on the predicted velocity boundary layer and the electric double layer near the negatively charged channel wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2021

Jared Allison, John Pearce, Joseph Beaman and Carolyn Seepersad

Additive manufacturing (AM) of thermoplastic polymers for powder bed fusion processes typically requires each layer to be fused before the next can be deposited. The purpose of…

Abstract

Purpose

Additive manufacturing (AM) of thermoplastic polymers for powder bed fusion processes typically requires each layer to be fused before the next can be deposited. The purpose of this paper is to present a volumetric AM method in the form of deeply penetrating radio frequency (RF) radiation to improve the speed of the process and the mechanical properties of the polymer parts.

Design/methodology/approach

The focus of this study was to demonstrate the volumetric fusion of composite mixtures containing polyamide (nylon) 12 and graphite powders using RF radiation as the sole energy source to establish the feasibility of a volumetric AM process for thermoplastic polymers. Impedance spectroscopy was used to measure the dielectric properties of the mixtures as a function of increasing graphite content and identify the percolation limit. The mixtures were then tested in a parallel plate electrode chamber connected to an RF generator to measure the heating effectiveness of different graphite concentrations. During the experiments, the surface temperature of the doped mixtures was monitored.

Findings

Nylon 12 mixtures containing between 10% and 60% graphite by weight were created, and the loss tangent reached a maximum of 35%. Selective RF heating was shown through the formation of fused composite parts within the powder beds.

Originality/value

The feasibility of a novel volumetric AM process for thermoplastic polymers was demonstrated in this study, in which RF radiation was used to achieve fusion in graphite-doped nylon powders.

Article
Publication date: 22 March 2013

Anwar Hossain and Rama Subba Reddy Gorla

The paper's aim is to investigate the mixed convection flow of an electrically conducting and viscous incompressible fluid past an isothermal vertical surface with Joule heating

Abstract

Purpose

The paper's aim is to investigate the mixed convection flow of an electrically conducting and viscous incompressible fluid past an isothermal vertical surface with Joule heating in the presence of a uniform transverse magnetic field fixed relative to the surface. It was assumed that the electrical conductivity of the fluid varies linearly with the transverse velocity component.

Design/methodology/approach

The governing boundary layer equations were solved numerically. The boundary layer equations were first reduced to a convenient form by using two different formulations, namely, (i) the stream function formulation (SFF) and (ii) primitive variable formulation (PVF).

Findings

It was observed that both the local shear‐stress and Nusselt number increase with increasing value of local magnetic parameter, ξ.

Research limitations/implications

In the present investigation, we investigated the effects of Joule heating on MHD mixed convection boundary layer flow of an electrically conducting viscous incompressible fluid past an isothermal vertical flat plate in the presence of a transverse magnetic field fixed relative to the surface of the plate. The analysis was valid for a steady, two dimensional laminar flow. An extension to three dimensional flow case is left for future work.

Practical implications

Here we have analyzed the problem of mixed convection flow of electrically conducting and viscous incompressible fluid past an isothermal vertical surface with viscous and Joule heating in presence of a uniform transverse magnetic field fixed relative to the surface. The work would be useful in the thermal management of heat transfer devices.

Originality/value

The results of this study may be of interest to engineers interested in heat exchanger design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1993

Wlodzimierz Wie¸źlak and Janusz Zieliński

Presents the possibility of utilization of the textile heating element for designing protective clothing. Investigation of the textile heating element has been carried out and it…

352

Abstract

Presents the possibility of utilization of the textile heating element for designing protective clothing. Investigation of the textile heating element has been carried out and it has been found that a conductive woven fabric of specific resistance should not be higher than 4*10−2 (Ω*m). Physical behaviour of the heating element can be described according to Ohm's law. A number of variants of heating packs have been tested by means of thermovision. Attention was paid to the problem of ensuring an appropriate distribution of temperatures on the inner side of clothing and obtaining a possible low temperature on the outside of clothing. A model of the system, body/heated clothing/environment, has been developed, making assumptions related to: the structure and physiology of the body; the structure of clothing and properties of materials; outer climatic conditions. Clothing prototypes were subjected to laboratory tests to verify correctness of the assumptions concerning both the heating system construction and the active clothing designing. The laboratory and functional investigations of active clothing have been positively verified by the developed model. Garments so designed are absolutely safe for the user and protects him efficiently against cooling‐down during his stay in a low temperature environment.

Details

International Journal of Clothing Science and Technology, vol. 5 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields…

Abstract

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields. Looks at the coupling of fields in a device or a system as a prescribed effect. Points out that there are 12 contributions included ‐ covering magnetic levitation or induction heating, superconducting devices and possible effects to the human body due to electric impressed fields.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 January 2018

Petr Veselý, Eva Horynová, Jiří Starý, David Bušek, Karel Dušek, Vít Zahradník, Martin Plaček, Pavel Mach, Martin Kučírek, Vladimír Ježek and Milan Dosedla

The purpose of this paper is to increase the reliability of manufactured electronics and to reveal reliability significant factors. The experiments were focused especially on the…

Abstract

Purpose

The purpose of this paper is to increase the reliability of manufactured electronics and to reveal reliability significant factors. The experiments were focused especially on the influence of the reflow oven parameters presented by a heating factor.

Design/methodology/approach

The shear strength of the surface mount device (SMD) resistors and their joint resistance were analyzed. The resistors were assembled with two Sn/Ag/Cu-based and one Bi-based solder pastes, and the analysis was done for several values of the heating factor and before and after isothermal aging. The measurement of thickness of intermetallic compounds was conducted on the micro-sections of the solder joints.

Findings

The shear strength of solder joints based on the Sn/Ag/Cu-based solder alloy started to decline after the heating factor reached the value of 500 s · K, whereas the shear strength of the solder alloy based on the Bi alloy (in the measured range) always increased with an increase in the heating factor. Also, the Bi-based solder joints showed shear strength increase after isothermal aging in contrast to Sn/Ag/Cu-based solder joints, which showed shear strength decrease.

Originality/value

The interpretation of the results of such a comprehensive measurement leads to a better understanding of the mutual relation between reliability and other technological parameters such as solder alloy type, surface finish and parameters of the soldering process.

Details

Circuit World, vol. 44 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 7000