Search results

1 – 10 of over 23000
Article
Publication date: 5 October 2023

Zhixiong Chen, Weishan Long, Li Song and Xinglin Li

This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis.

Abstract

Purpose

This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis.

Design/methodology/approach

First, the authors carried out wear experiments on Si3N4–GCr15 and GCr15–GCr15 friction pairs through the ball-disc wear test rig to explore the tribological properties of their materials. Second, using ANSYS/LS-DYNA simulation software, the dynamic simulation analysis of hybrid bearings was carried out under certain working conditions, and the dynamic contact stress of all-steel bearings of the same size was simulated and compared. Finally, the change of the maximum contact stress of the main bearing under the change of load and rotation speed was studied.

Findings

The results show that the Si3N4–GCr15 pair has better tribological performance. At the same time, under the conditions of high speed and heavy load, the simulation analysis shows that the contact stress between the ceramic ball and the raceway of the ring is smaller than the steel ball. That is, hybrid bearings have better transient mechanical properties than all-steel bearings. With the speed increasing to 12,000 r/min, the maximum stress point will shift in the inner and outer rings.

Originality/value

In this study, the tribological and transient mechanical properties of Si3N4 material were comprehensively analyzed through wear experiments and dynamic simulation analysis, which provided a reference for the design of hybrid bearings for next-generation aeroengines.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 November 2021

Xingxing Fang, Dahan Li, Yucheng Xin, Songquan Wang, Yongbo Guo, Ningning Hu and Dekun Zhang

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait…

Abstract

Purpose

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait cycle.

Design/methodology/approach

In this paper, four common femoral head-on-acetabular cup contact pairs are used as the research objects, mathematical calculations and finite element simulations are adopted. The contact model of hip joint head and acetabular cup was established by finite element simulation to analyze the stress and temperature distribution of the contact interface.

Findings

The results show that the contact stress of the head-on-cup interface is inversely proportional to the contact area; high contact stress directly leads to greater frictional heat. However, hip joints with metal-on-polyethylene or ceramic-on-polyethylene paired interfaces have lower frictional heat and show a significant temperature rise in one gait cycle, which may be related to the material properties of the acetabular cup.

Originality/value

Previous studies about calculating the interface frictional heat always ignore the dynamic change process in the contact load and the contact area. This study considered the dynamic changes of the contact stress and area of the femoral head-on-acetabular cup interface, and four common contact pairs were systematically analyzed.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 October 2018

Yuan Zhao, Zhennan Han, Yali Ma and Qianqian Zhang

The purpose of this paper is to establish a new dynamic coupled discrete-element contact model used for investigating fresh concrete with different grades and different motion…

Abstract

Purpose

The purpose of this paper is to establish a new dynamic coupled discrete-element contact model used for investigating fresh concrete with different grades and different motion states, and demonstrate its correctness and reliability according to the rheological property results of flow fresh concrete in different working states through simulating the slump process and mixing process.

Design/methodology/approach

To accurately express the motion and force of flowing fresh concrete in different working states from numerical analysis, a dynamic coupled discrete-element contact model is proposed for fresh concrete of varying strength. The fluid-like fresh concrete is modelled as a two-phase fluid consisting of mortar and aggregate. Depending on the contact forms of the aggregate and mortar, the model is of one of the five types, namely, Hertz–Mindlin, pendular LB contact, funicular mucous contact, capillary LB contact or slurry lift/drag contact.

Findings

To verify the accuracy of this contact model, concrete slump and cross-vane rheometer tests are simulated using the traditional LB model and dynamic coupled contact model, for five concrete strengths. Finally, by comparing the simulation results from the two different contact models with experimental data, it is found that those from the proposed contact model are closer to the experimental data.

Practical implications

This contact model could be used to address issues such as (a) the mixing, transportation and pumping of fresh concrete, (b) deeper research and discussion on the influence of fresh concrete on the dynamic performance of agitated-transport vehicles, (c) the behaviour of fresh concrete in mixing tanks and (d) the abrasion of concrete pumping pipes.

Originality/value

To accurately express the motion and force of flowing fresh concrete in different working states from numerical analysis, a dynamic coupled discrete-element contact model is proposed for fresh concrete of varying strength.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 March 2018

Xi Shi and Yunwu Zou

The explicit finite element method (FEM) is one of the most popular approaches in quasi-static contact analysis which involves highly nonlinear friction and large deformation…

Abstract

Purpose

The explicit finite element method (FEM) is one of the most popular approaches in quasi-static contact analysis which involves highly nonlinear friction and large deformation. Usually, a high loading rate is expected to improve computation efficiency in FEM. However, a higher loading rate often results in significant dynamic effects in the simulations. This study aims to propose a new criterion to achieve a good balance between a high loading rate and minimal dynamic effects.

Design/methodology/approach

The proposed criterion is based on the fluctuation of total strain energy as well as the smoothness of its first derivative to determine the proper loading time with an acceptable level of dynamic effect.

Findings

Asperities’ sliding contact and Hertz contact problems have been solved with the proposed criterion to verify its validity. The simulations show that the computation efficiency with the proposed criterion can be improved by up to 80 per cent compared to the regular energy ratio criterion.

Originality/value

This criterion will provide a valuable tool in determining the proper loading time to improve the computation efficiency for quasi-static analysis of asperities’ contacts.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 October 2018

Yongcun Cui, Sier Deng, Yanguang Ni and Guoding Chen

The purpose of this study is to investigate the effect of roller dynamic unbalance on cage stress.

Abstract

Purpose

The purpose of this study is to investigate the effect of roller dynamic unbalance on cage stress.

Design/methodology/approach

Considering the impact of roller dynamic unbalance, the dynamic analysis model of high-speed cylindrical roller bearing is established. And then the results of dynamic model are used as the boundary conditions for the finite element analysis model of roller and cage to obtain the cage stress.

Findings

Roller dynamic unbalance affects the contact status between roller and cage pocket and causes the overall increase in cage stress. The most significant impact on cage stress is roller dynamic unbalance in angular direction of roller axis, followed by radial and axial directions. Smaller radial clearance of bearing and a reasonable range of pocket clearance are beneficial to reduce the impact of roller dynamic unbalance on cage stress; the larger cage guide clearance is a disadvantage to decrease cage stress. The impact of roller dynamic unbalance on cage stress under high-speed condition is greater than that in low-speed conditions.

Originality/value

The research can provide some theoretical guidance for the design and manufacture of bearing in high-speed cylindrical roller bearing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 August 2018

Yunn-Lin Hwang and Thi-Na Ta

The purpose of this paper is to study the influence of friction on static and dynamic characteristics, as well as the strength and lifetime of a flexible three-axes computer…

Abstract

Purpose

The purpose of this paper is to study the influence of friction on static and dynamic characteristics, as well as the strength and lifetime of a flexible three-axes computer numerical control (CNC) machine tool.

Design/methodology/approach

The machine tool is first modeled by using finite element method to analyze static structure with frictionless surface-to-surface contact type. Because the machine tool structure is becoming more and more sophisticated over time, the significant influence of contact conditions between structural elements on the dynamic characteristics of the whole structure must be considered. To examine the dynamic effects caused by inertia forces and displacement of moving bodies on contact stress, the coefficient of friction between two contact bodies is added to perform dynamic simulation and compare the results with the static analysis results.

Findings

Distribution of stress and contact forces in solid-flexible contact is also studied by using the fundamental dynamic characteristics of a bushing joint.

Originality/value

Finally, the influence of dynamic structure, cutting conditions and material properties on the strength and lifetime of the CNC machine tool is discussed by using fatigue analysis. Consequently, this research can be used for efficient simulation of structural dynamics, lifetime assessment and interactions of the real CNC machine with the machine tool structure in a virtual environment.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Dhaval B. Shah, Kaushik M. Patel and Ruchik D. Trivedi

The purpose of this paper is to describe a method permitting the creation of a realistic model of spherical roller bearing with the aim of determining contact stress and fatigue…

Abstract

Purpose

The purpose of this paper is to describe a method permitting the creation of a realistic model of spherical roller bearing with the aim of determining contact stress and fatigue life based on dynamic loading conditions. The paper also aims to recognize the effect of tolerance values on contact stress and fatigue life. Motion and load transmission in spherical roller bearing occurs within the assembly by elliptical curved contacting surfaces. The stress produced by the transmitted load would be very high because of least contacting area between these surfaces.

Design/methodology/approach

The paper describes a methodology to determine contact stress using analytically as well as finite element method for spherical roller bearing. The comparison for the both each approach for contact stress at different loading condition is carried out. Prediction of fatigue life based on dynamic loading conditions for bearing is also determined using finite element model. The effect on induced contact stress and fatigue life by varying tolerances on inner race dimensions have been found out.

Findings

The paper suggests that the maximum stress produces at the start or end of the contacting arc under static loading condition in spherical roller bearing. The analytical and finite element approach is in good agreement. The fatigue life prediction is useful for selecting loading conditions for various applications of double row spherical roller bearing. Tolerance level at inner ring raceway radius is kept high because of manufacturing constrain of complex curvature geometric shape.

Research limitations/implications

The present approach does not consider dynamic loading conditions for contact stress analysis. Therefore, researchers are encouraged to analyze the effect of wear, lubrication and other tribological aspects on bearing life.

Originality/value

The paper includes determination of contact stress and prediction of fatigue life for spherical roller bearing using analytical as well as finite element approach. The tolerance values at inner race are identified as per manufacturing constraint based on contact stress and fatigue life.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 October 2018

Li Huakang, Kehong Lv, Shen Qinmu, Jing Qiu and Guanjun Liu

This paper aims to reproduce the electrical connector intermittent fault behaviours with step-up vibration stress while maintaining the integrity of the product.

131

Abstract

Purpose

This paper aims to reproduce the electrical connector intermittent fault behaviours with step-up vibration stress while maintaining the integrity of the product.

Design/methodology/approach

A dynamic model of an electrical connector under vibration is established for contact resistance analysis. Next, the dynamic characteristics of contact resistance are analysed, and cumulative damage theory is used to calculate the damage under different stresses during the intermittent fault reproduction test. To reduce damage and improve efficiency, the step-up stress is used for the reproduction test.

Findings

The proposed method can reproduce the intermittent fault behaviour, and the step-up stress test is more efficient than the constant stress test.

Research limitations/implications

Step-up stress is used for intermittent fault reproduction, and the quantitative relationships between intermittent fault and product damage can be further studied.

Practical implications

It is expected that the proposed methodology can help engineers to reproduce the intermittent fault behaviours to facilitate the detection and diagnosis of intermittent fault and to improve equipment safety.

Originality/value

The mechanism of electrical connector reproduction is analysed and the step-up stress test is used for intermittent fault reproduction.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 August 2018

Prashant Jaysing Patil, Maharudra Patil and Krishnakumar Joshi

The aim of this paper is to study the effect of pressure angle and helix angle on bending stress at the root of helical gear tooth under dynamic state. Gear design is a highly…

Abstract

Purpose

The aim of this paper is to study the effect of pressure angle and helix angle on bending stress at the root of helical gear tooth under dynamic state. Gear design is a highly complex process. The consistent demand to build low-cost, quieter and efficient machinery has resulted in a gradual change in gear design. Gear parameters such as pressure angle, helix angle, etc. affect the load-carrying capacity of gear teeth. Adequate load-carrying capacity of a gear is a prime requirement. The failure at the critical section because of bending stress is an unavoidable phenomenon. Besides this fact, the extent of these failures can be reduced by a proper gear design. The stresses produced under dynamic loading conditions in machine member differ considerably from those produced under static loading.

Design/methodology/approach

The present work is intended to study the effect of pressure angle and helix angle on the bending stress at the root of helical gear tooth under dynamic state. The photostress method has been used as experimental methods. Theoretical analysis was carried out by velocity factor method and Spott’s equation. LS DYNA has been used for finite element (FE) analysis.

Findings

The results show that experimental method gives a bending stress value that is closer to the true value, and bending stress varies with pressure angle and helix angle. The photostress technique gives clear knowledge of stress pattern at root of tooth.

Originality/value

The outcomes of this work help the designer use optimum weight-to-torque ratio of gear; this is ultimately going to reduce the total bulk of the gear box.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 May 2019

Wang Jiawei and Sun Quansheng

Swivel construction is a new bridge construction method, which can minimize the impact on railway and highway traffic. Previous studies were based on single factor and static…

Abstract

Purpose

Swivel construction is a new bridge construction method, which can minimize the impact on railway and highway traffic. Previous studies were based on single factor and static analysis, which cannot reflect the real state of structures. The purpose of this paper is to establish a dynamic model of the structure and to analyze the situation under multi-variable coupling effects to accurately simulate the real state of the structure.

Design/methodology/approach

Finite element software ANSYS was used to establish dynamic model of turntable structure and then to analyze the effects of multiple factors on total stress, friction stress and slipping distance of the turntable structure.

Findings

It is concluded that the unbalanced weight and radius of spherical hinges have great influence on the turntable structure, so the design should be strictly considered. Friction stress and angular acceleration have little effect on the turntable structure.

Originality/value

This paper provides simulation of the whole process of swivel construction method. Whereas previous studies focused on static analysis, this paper focuses on the dynamic analysis of swivel construction method. The mechanics of the swivel structure under multiple factors was analyzed. According to the analysis results, the design parameters of the turntable structure are optimized.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 23000