Search results

1 – 10 of 154
Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 July 2012

Sadegh Rahmati, Farid Abbaszadeh and Farzam Farahmand

The purpose of this paper is to present an improved methodology for design of custom‐made hip prostheses, through integration of advanced image processing, computer aided design…

1272

Abstract

Purpose

The purpose of this paper is to present an improved methodology for design of custom‐made hip prostheses, through integration of advanced image processing, computer aided design (CAD) and additive manufacturing (AM) technologies.

Design/methodology/approach

The proposed methodology for design of custom‐made hip prostheses is based on an independent design criterion for each of the intra‐medullary and extra‐medullary portions of the prosthesis. The intra‐medullar part of the prosthesis is designed using a more accurate and detailed description of the 3D geometry of the femoral intra‐medullary cavity, including the septum calcar ridge, so that an improved fill and fit performance is achieved. The extra‐medullary portion of the prosthesis is designed based on the anatomical features of the femoral neck, in order to restore the original biomechanical characteristics of the hip joint. The whole design procedure is implemented in a systematic framework to provide a fast, repeatable and non‐subjective response which can be further evaluated and modified in a preplanning simulation environment.

Findings

The efficacy of the proposed methodology for design of custom‐made hip prostheses was evaluated in a case study on a hip dysplasia patient. The cortical bone was distinguished from cancellous in CT images using a thresholding procedure. In particular the septum calcar ridge could be recognized and was incorporated in the design to improve the primary stability of the prosthesis. The lateral and frontal views of the prosthesis, with the patient's images at the background, indicated a close geometrical match with the cortical bone of femoral shaft, and a good compatibility with the anatomy of the proximal femur. Also examination of the cross sections of the prosthesis and the patient's intra‐medullary canal at five critical levels revealed close geometrical match in distal stem but less conformity in proximal areas due to preserving the septum calcar ridge. The detailed analysis of the fitting deviation between the prosthesis and point cloud data of the patient's femoral intra‐medullary canal, indicated a rest fitting deviation of 0.04 to 0.11 mm in stem. However, relatively large areas of interference fit of −0.04 mm were also found which are considered to be safe and not contributing to the formation of bone cracks. The geometrical analysis of the extra‐medullary portion of the prosthesis indicated an anteversion angle of 12.5 degrees and a neck‐shaft angle of 131, which are both in the acceptable range. Finally, a time and cost effective investment casting technique, based on AM technology, was used for fabrication of the prosthesis.

Originality/value

The proposed design methodology helps to improve the fixation stability of the custom made total hip prostheses and restore the original biomechanical characteristics of the joint. The fabrication procedure, based on AM technology, enables the production of the customized hip prosthesis more accurately, quickly and economically.

Article
Publication date: 19 November 2021

Liliana-Laura Badita, Virgil Florescu, Constantin Tiganesteanu and Lucian Capitanu

The study aims to analyze the fretting phenomenon, manifested at the taper junctions of modular total hip prostheses (THP). Modularity of prostheses implies the micro-movement…

Abstract

Purpose

The study aims to analyze the fretting phenomenon, manifested at the taper junctions of modular total hip prostheses (THP). Modularity of prostheses implies the micro-movement occurrence. Fractures can arise as a result of the fretting cracking of the prostheses components, affecting durability of modular THPs. Fretting corrosion is associated with the decrease in the clinical acceptance of hip modular implants.

Design/methodology/approach

Starting from the fretting phenomenon influence on modularity, monoblock THPs and prostheses with modular femoral head recovered from some review surgeries were investigated. Modular prostheses have a taper junction femoral head – femoral stem neck. Investigation consisted in the analysis of fretting wear and fretting corrosion, of the femoral heads’ taper and of the femoral stems’ trunnions.

Findings

The main result was that the micro-movement that provokes the fretting of the femoral head-femoral stem taper junction analyzed does not have the same direction. It is manifesting in the direction of the axis of the femoral head taper, around this axis or as a composed movement. The authors suspect that this is due to the different design of the taper. In this way, the inclination of the stem’s trunnion into the head hole has a different angular misalignment and may cause greater damages of the taper.

Originality/value

This result can be a starting point from the improvement of the future taper junctions design that will improve the quality, durability and modularity of THPs.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 November 2021

Xingxing Fang, Dahan Li, Yucheng Xin, Songquan Wang, Yongbo Guo, Ningning Hu and Dekun Zhang

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait…

Abstract

Purpose

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait cycle.

Design/methodology/approach

In this paper, four common femoral head-on-acetabular cup contact pairs are used as the research objects, mathematical calculations and finite element simulations are adopted. The contact model of hip joint head and acetabular cup was established by finite element simulation to analyze the stress and temperature distribution of the contact interface.

Findings

The results show that the contact stress of the head-on-cup interface is inversely proportional to the contact area; high contact stress directly leads to greater frictional heat. However, hip joints with metal-on-polyethylene or ceramic-on-polyethylene paired interfaces have lower frictional heat and show a significant temperature rise in one gait cycle, which may be related to the material properties of the acetabular cup.

Originality/value

Previous studies about calculating the interface frictional heat always ignore the dynamic change process in the contact load and the contact area. This study considered the dynamic changes of the contact stress and area of the femoral head-on-acetabular cup interface, and four common contact pairs were systematically analyzed.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 January 2017

Lucian Capitanu, Virgil Florescu and Liliana-Laura Badita

The purpose of this study was to realize finite element simulation in order to dynamically determine the area of the contact, the contact pressure and the strain energy density…

137

Abstract

Purpose

The purpose of this study was to realize finite element simulation in order to dynamically determine the area of the contact, the contact pressure and the strain energy density (identified as a damage function) for three different activities – normal walking, ascending stairs and descending stairs – that could be considered to define the level of the activity of the patient.

Design/methodology/approach

The finite element model uses a modern contact mechanism that includes friction between the metallic femoral condyles or femoral head (considered rigid) and the tibial polyethylene insert or acetabular cup (considering a non-linear behaviour).

Findings

For all three activities, the finite element analyses were performed, and a damage score was computed. Finally, a cumulative damage score (that accounts for all three activities) was determined, and the areas where the fatigue wear is likely to occur were identified.

Originality/value

A closer look at the distribution of the damage score reveals that the maximum damage is likely to occur not at the contact surface, but in the subsurface.

Details

Industrial Lubrication and Tribology, vol. 69 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 July 2013

Kyungmok Kim, Jean Geringer and Bernard Forest

The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures.

Abstract

Purpose

The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures.

Design/methodology/approach

A two‐dimensional finite element model is developed with an actual Al2O3‐10 vol% ZrO2 microstructure. A bilinear, time‐independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro‐void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models.

Findings

Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro‐void brings about the increase of crack density rate.

Social implications

This paper is the first step for predicting the lifetime of ceramic implants. The social implications would appear in the next few years about health issues.

Originality/value

This proposed finite element method allows describing fracture and fatigue behaviours of alumina‐zirconia microstructures for hip prosthesis, provided that a microstructure image is available.

Article
Publication date: 29 May 2009

António Manuel de A. Monteiro Ramos and José António Simões

The purpose of this paper is to present the development of a technical procedure for the manufacturing of medical implant prototypes.

1268

Abstract

Purpose

The purpose of this paper is to present the development of a technical procedure for the manufacturing of medical implant prototypes.

Design/methodology/approach

The paper was performed on a new hip implant design and manufactured with different metallic alloys F75 (ASTM) commonly used in biomedical applications. Dimensional parameters between the computer‐aided design (CAD) geometry and the prototypes and surface roughness for different casting alloy were compared. A CAD model was used for machining of a prototype. Room temperature vulcanising (RTV) rubber moulds allowed the manufacturing of wax models of the femoral prosthesis. A specific lost‐wax casting (LWC) technology was used to manufacture prototypes for in vitro tests. The final geometry was dimensionally controlled using different type of parameters (performance, average, standard, maximum and minimum deviations), surface roughness (Ra, Rt and Rp) were measured for all prototypes.

Findings

To obtain a small number of implants, RTV rubber vacuum casting technique can be used to obtain lost wax models with good dimensional stability. No significant dimensional differences were observed relatively to the virtual model. However, the temperature of the wax and the rubber mould were important parameters to obtain good quality wax models. Surface roughness was different for different alloys.

Practical implications

The design and development of a new hip femoral prosthesis prototype based on rapid tooling techniques to manufacture LWC prototypes is suitable for clinical trials.

Originality/value

This paper describes a biomanufacturing methodology to manufacture biomedical implant prototypes.

Details

Rapid Prototyping Journal, vol. 15 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 January 2015

Dan Leordean, Cristian Dudescu, Teodora Marcu, Petru Berce and Nicolae Balc

The purpose of this paper was to present how customized implants could be made with specific properties, by setting different values of the laser power, within the selective laser…

Abstract

Purpose

The purpose of this paper was to present how customized implants could be made with specific properties, by setting different values of the laser power, within the selective laser melting (SLM) process. A detailed case study was undertaken and a new multi-structured femoral prosthesis was designed and analyzed, to simulate its behavior for a specific case study.

Design/methodology/approach

The materials and manufacturing methods are presented, with details regarding the SLM process, using the Realizer 250 machine. The laser power was varied between 50 and 200 W, thus obtaining samples with different physical and mechanical characteristics. All those sample parts were characterized and their properties were measured.

Findings

A practical methodology was found to produce multi-structured implants by SLM. Significant changes of the porosity and properties were found, when modifying the laser power at the SLM machine. The studies have indicated an open porosity varying between 24.810.83 per cent. Tensile tests of the samples showed Young’s modulus values varying between 13.5 and 104.5 GPa and an ultimate stress between 20.2 and 497.5 MPa.

Research limitations/implications

There is no Additive Manufacturing (AM) machine available, to work with different laser power values, in different regions of the same section of the implant. Hence, a multi-structured implant cannot be obtained directly.

Practical implications

The prosthesis should be specifically designed to contain separate models/regions to be made with appropriate laser power values.

Originality/value

This paper presents a new method to design and manufacture a multi-structured implant, using the existing AM equipment. A detailed case study is presented, showing the design procedure, the way to simulate its behavior and the methods to produce the implants by SLM.

Details

Rapid Prototyping Journal, vol. 21 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 October 2015

Janusz Domanski, Konstanty Skalski, Roman Grygoruk and Adrian Mróz

The purpose of this paper is to present the methodology of a design process of new lumbar intervertebral disc implants with specific emphasis on the use of rapid prototyping…

966

Abstract

Purpose

The purpose of this paper is to present the methodology of a design process of new lumbar intervertebral disc implants with specific emphasis on the use of rapid prototyping technologies. The verification of functionality of artificial intervertebral discs is also given. The paper describes the attempt and preliminary research to evaluate the properties of the intervertebral disc implant prototypes manufactured with the use of different rapid prototyping technologies, i.e. FDM – fused deposition modelling, 3DP – 3D printing and SLM – selective laser melting.

Design/methodology/approach

Based on the computed tomography (CT) scan data, the anatomical parameters of lumbar spine bone tissue were achieved, which were the bases for the design-manufacture process carried out with the use of computer-aided designing/computer-aided engineering/computer-aided manufacturing systems. In the intervertebral disc implant design process, three RP technologies: FDM, 3DP and SLM were used for solving problems related to the reconstruction of geometry and functionality of the disc. Some preliminary tests such as measurement of roughness and structural analyses of material of prototypes made by different prototyping technologies were performed.

Findings

This paper allowed the authors to elaborate and patent two new intervertebral disc implants. Because the implant designs are parametrical ones with relation to lumbar bone tissue properties measured on CT scans, they can be also made for individual patients. We also compared some of the properties of intervertebral implants prototypes made with the use of FDM, 3DP and SLM technologies.

Originality/value

The paper presents the new intervertebral disc implants and their manufacturing by rapid prototyping. The methodology of designing intervertebral disc implant is shown. Some features of the methodology make it useful for preoperative planning of intervertebral disc surgery, as well.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1988

P. Schneider and W. Servis

Careful integration of robot, end‐effectors, peripheral hardware and software are crucial to successful robot applications.

Abstract

Careful integration of robot, end‐effectors, peripheral hardware and software are crucial to successful robot applications.

Details

Industrial Robot: An International Journal, vol. 15 no. 4
Type: Research Article
ISSN: 0143-991X

1 – 10 of 154