Search results

1 – 10 of 15
Article
Publication date: 18 April 2024

Li Li, Tong Huang, Chujia Pan, J.F. Pan and Wenbin Su

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the…

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 September 2024

Qing Liu, Chengjun Wang, Chenchen Shang and Jiabao Li

The purpose of this study is to reduce the residual stress in welded workpieces, optimize the vibratory stress relief treatment process through the use of a vibration generator…

Abstract

Purpose

The purpose of this study is to reduce the residual stress in welded workpieces, optimize the vibratory stress relief treatment process through the use of a vibration generator and enhance the durability and longevity of the workpiece by developing a vibratory stress relief robot that incorporates a multi-manipulator system.

Design/methodology/approach

The multi-manipulator combination work is designed so that each manipulator is deployed according to the requirements of vibration stress relief work. Each manipulator works independently and coordinates with others to achieve multi-dimensional vibratory stress relief of the workpiece. A two-degree-of-freedom mobile platform is designed to enable the transverse and longitudinal movement of the manipulator, expanding the working space of the robot. A small electromagnetic superharmonic vibration generator is designed to produce directional vibrations in any orientation. This design addresses the technical challenge of traditional vibration generators being bulky and unable to achieve directional vibrations.

Findings

The residual stress relief experiment demonstrates that the residual stress of the workpiece is reduced by approximately 73% through three-degree-of-freedom vibration. The multi-dimensional vibration effectively enhances the relief effect of residual stress, which is beneficial for improving the strength and service life of the workpiece.

Originality/value

A new multi-manipulator robot is proposed to alleviate the residual stress generated by workpiece welding by integrating vibratory stress relief with robotics. It is beneficial to reduce material and energy consumption while enhancing the strength and service life of the workpiece.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 April 2024

Xiaona Wang, Jiahao Chen and Hong Qiao

Limited by the types of sensors, the state information available for musculoskeletal robots with highly redundant, nonlinear muscles is often incomplete, which makes the control…

Abstract

Purpose

Limited by the types of sensors, the state information available for musculoskeletal robots with highly redundant, nonlinear muscles is often incomplete, which makes the control face a bottleneck problem. The aim of this paper is to design a method to improve the motion performance of musculoskeletal robots in partially observable scenarios, and to leverage the ontology knowledge to enhance the algorithm’s adaptability to musculoskeletal robots that have undergone changes.

Design/methodology/approach

A memory and attention-based reinforcement learning method is proposed for musculoskeletal robots with prior knowledge of muscle synergies. First, to deal with partially observed states available to musculoskeletal robots, a memory and attention-based network architecture is proposed for inferring more sufficient and intrinsic states. Second, inspired by muscle synergy hypothesis in neuroscience, prior knowledge of a musculoskeletal robot’s muscle synergies is embedded in network structure and reward shaping.

Findings

Based on systematic validation, it is found that the proposed method demonstrates superiority over the traditional twin delayed deep deterministic policy gradients (TD3) algorithm. A musculoskeletal robot with highly redundant, nonlinear muscles is adopted to implement goal-directed tasks. In the case of 21-dimensional states, the learning efficiency and accuracy are significantly improved compared with the traditional TD3 algorithm; in the case of 13-dimensional states without velocities and information from the end effector, the traditional TD3 is unable to complete the reaching tasks, while the proposed method breaks through this bottleneck problem.

Originality/value

In this paper, a novel memory and attention-based reinforcement learning method with prior knowledge of muscle synergies is proposed for musculoskeletal robots to deal with partially observable scenarios. Compared with the existing methods, the proposed method effectively improves the performance. Furthermore, this paper promotes the fusion of neuroscience and robotics.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 6 March 2024

Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen and Jinge Si

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged…

Abstract

Purpose

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.

Design/methodology/approach

In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.

Findings

The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.

Originality/value

The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 April 2024

Long Zhao, Xiaoye Liu, Linxiang Li, Run Guo and Yang Chen

This study aims to realize efficient, fast and safe robot search task, the belief criteria decision-making approach is proposed to solve the object search task with an uncertain…

Abstract

Purpose

This study aims to realize efficient, fast and safe robot search task, the belief criteria decision-making approach is proposed to solve the object search task with an uncertain location.

Design/methodology/approach

The study formulates the robot search task as a partially observable Markov decision process, uses the semantic information to evaluate the belief state and designs the belief criteria decision-making approach. A cost function considering a trade-off among belief state, path length and movement effort is modelled to select the next best location in path planning.

Findings

The semantic information is successfully modelled and propagated, which can represent the belief of finding object. The belief criteria decision-making (BCDM) approach is evaluated in both Gazebo simulation platform and physical experiments. Compared to greedy, uniform and random methods, the performance index of path length and execution time is superior by BCDM approach.

Originality/value

The prior knowledge of robot working environment, especially semantic information, can be used for path planning to achieve efficient task execution in path length and execution time. The modelling and updating of environment information can lead a promising research topic to realize a more intelligent decision-making method for object search task.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 July 2024

Peng Guo, Weiyong Si and Chenguang Yang

The purpose of this paper is to enhance the performance of robots in peg-in-hole assembly tasks, enabling them to swiftly and robustly accomplish the task. It also focuses on the…

73

Abstract

Purpose

The purpose of this paper is to enhance the performance of robots in peg-in-hole assembly tasks, enabling them to swiftly and robustly accomplish the task. It also focuses on the robot’s ability to generalize across assemblies with different hole sizes.

Design/methodology/approach

Human behavior in peg-in-hole assembly serves as inspiration, where individuals visually locate the hole firstly and then continuously adjust the peg pose based on force/torque feedback during the insertion process. This paper proposes a novel framework that integrate visual servo and adjustment based on force/torque feedback, the authors use deep neural network (DNN) and image processing techniques to determine the pose of hole, then an incremental learning approach based on a broad learning system (BLS) is used to simulate human learning ability, the number of adjustments required for insertion process is continuously reduced.

Findings

The author conducted experiments on visual servo, adjustment based on force/torque feedback, and the proposed framework. Visual servo inferred the pixel position and orientation of the target hole in only about 0.12 s, and the robot achieved peg insertion with 1–3 adjustments based on force/torque feedback. The success rate for peg-in-hole assembly using the proposed framework was 100%. These results proved the effectiveness of the proposed framework.

Originality/value

This paper proposes a framework for peg-in-hole assembly that combines visual servo and adjustment based on force/torque feedback. The assembly tasks are accomplished using DNN, image processing and BLS. To the best of the authors’ knowledge, no similar methods were found in other people’s work. Therefore, the authors believe that this work is original.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 11 June 2024

Zhihong Jiang, Jiachen Hu, Xiao Huang and Hui Li

Current reinforcement learning (RL) algorithms are facing issues such as low learning efficiency and poor generalization performance, which significantly limit their practical…

Abstract

Purpose

Current reinforcement learning (RL) algorithms are facing issues such as low learning efficiency and poor generalization performance, which significantly limit their practical application in real robots. This paper aims to adopt a hybrid model-based and model-free policy search method with multi-timescale value function tuning, aiming to allow robots to learn complex motion planning skills in multi-goal and multi-constraint environments with a few interactions.

Design/methodology/approach

A goal-conditioned model-based and model-free search method with multi-timescale value function tuning is proposed in this paper. First, the authors construct a multi-goal, multi-constrained policy optimization approach that fuses model-based policy optimization with goal-conditioned, model-free learning. Soft constraints on states and controls are applied to ensure fast and stable policy iteration. Second, an uncertainty-aware multi-timescale value function learning method is proposed, which constructs a multi-timescale value function network and adaptively chooses the value function planning timescales according to the value prediction uncertainty. It implicitly reduces the value representation complexity and improves the generalization performance of the policy.

Findings

The algorithm enables physical robots to learn generalized skills in real-world environments through a handful of trials. The simulation and experimental results show that the algorithm outperforms other relevant model-based and model-free RL algorithms.

Originality/value

This paper combines goal-conditioned RL and the model predictive path integral method into a unified model-based policy search framework, which improves the learning efficiency and policy optimality of motor skill learning in multi-goal and multi-constrained environments. An uncertainty-aware multi-timescale value function learning and selection method is proposed to overcome long horizon problems, improve optimal policy resolution and therefore enhance the generalization ability of goal-conditioned RL.

Details

Robotic Intelligence and Automation, vol. 44 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 January 2024

Summer Dahyang Jung, Sahej Claire and Sohyeong Kim

Generation Z will be the leading consumer group in the future. Using convenience stores, the study provides an in-depth analysis on Gen Z’s current experience and future…

Abstract

Purpose

Generation Z will be the leading consumer group in the future. Using convenience stores, the study provides an in-depth analysis on Gen Z’s current experience and future expectations from retail stores. The study further highlights the differences between Gen Z’s perception of convenience stores across three different regions – the USA, South Korea and Japan.

Design/methodology/approach

This study conducted a series of in-depth, semi-structured interviews with 36 Gen Z participants from the USA (12), South Korea (11) and Japan (13). All interviews were first coded based on a preselected list of themes and were further coded with new themes that emerged from exploratory coding.

Findings

Each regional cohort varied in terms of how they experienced and what they expected from convenience stores. US participants showed negative or utilitarian attitudes toward convenience stores, whereas South Korean participants had a positive, personal attachment to them. In comparison, Japanese participants had a relatively neutral attitude. However, all three groups showed a common preference for smart technology and health concerns surrounding convenience store foods.

Practical implications

Convenience store chains should consider the cultural nuances when designing future services. The chains should further strive to remove the health concerns about the foods provided at the stores and design smart technologies that enhance user experience.

Originality/value

The present study broadens the knowledge in this budding consumer segment where current research is limited. It further sheds light on the variance among Gen Zers across different cultural contexts.

Article
Publication date: 26 June 2024

Leigang Zhang, Hongliu Yu and Xilong Cui

The null-space projection method is commonly adopted for controlling redundant robots, which undoubtedly requires the robot Jacobian matrix inverse. This paper aims to provide a…

Abstract

Purpose

The null-space projection method is commonly adopted for controlling redundant robots, which undoubtedly requires the robot Jacobian matrix inverse. This paper aims to provide a novel control scheme, which enables null-space control of redundant robots without conflict with the main task space.

Design/methodology/approach

In this paper, an impedance-based null-space control approach for redundant robots is proposed. The null-space degrees of freedom are separated from the primary task space by using the eigenvalue decomposition. Then, a joint impedance controller spans the null space and is reflected into the joint space to manage the redundancy. Finally, several experiments have been conducted to evaluate and validate the performance of the proposed approach in comparison with the null-space projection method under various situations.

Findings

Experiment results show that no significant differences were observed between the different filling eigenvalues in the proposed approach under different null-space dimensions and motion velocity. Besides, comparative experiment results demonstrate that the proposed method can achieve comparable results to the null-space projection method. Nevertheless, the suggested approach has benefits regarding the quantity of control parameters in addition to not requiring a Jacobian inverse. Notably, the performance of the proposed method will improve as the null-space dimension increases.

Originality/value

This study presents a new control method for redundant robots, which has advantages for dealing with the problems of controlling redundant robots compared to the existing methods.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 15