Search results

1 – 10 of 40
Article
Publication date: 26 May 2023

Aniela Kusber, Rafał Józef Gaida, Katarzyna Dziubek and Marian Wit

This study aims to investigate the influence of commercially available resins in water-based magenta pigment inkjet ink formulations on the properties of ink printability and the…

Abstract

Purpose

This study aims to investigate the influence of commercially available resins in water-based magenta pigment inkjet ink formulations on the properties of ink printability and the characteristics of ink application in food packaging. The impact of the resin on the jettability of the existing printability phase diagrams was also assessed.

Design/methodology/approach

Inks with different resin loadings were tested for selected properties, such as viscosity, particle size and surface tension. Stability was determined using a Turbiscan AGS turbidimeter and LumiFuge photocentrifuge analyzer. The ink layer fastness against abrasion and foodstuffs was evaluated using an Ugra device and according to PN-EN 646, respectively. JetXpert was used to assess Ricoh printhead jetting performance.

Findings

Printability diagrams successfully characterized the jettability of polyurethane inkjet inks on a multi-nozzle printhead and the binder improved droplet formation and printing precision.

Originality/value

Magenta water-based inkjet inks with commercial resins have been developed for printing on paper substrates. To the best of the authors’ knowledge, for the first time, inkjet ink stability was evaluated using the Turbiscan AGS and LumiFuge analyzers, and jettability models were verified using an industrial multi-nozzle printhead.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 May 2024

Cesar Omar Balderrama-Armendariz, Sergio Esteban Arbelaez-Rios, Santos-Adriana Martel-Estrada, Aide Aracely Maldonado-Macias, Eric MacDonald and Julian I. Aguilar-Duque

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder…

Abstract

Purpose

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder after multiple cycles in the laser system.

Design/methodology/approach

The experimental process for evaluating the reuse of SLS powders in a subsequent binder jetting process consists of four phases: powder characterization, bonding analysis, mixture testing and mixture characteristics. Analyses were carried out using techniques such as Fourier Transform Infrared Spectroscopy, scanning electron microscopy, thermogravimetric analysis and stress–strain tests for tension and compression. The surface roughness, color, hardness and density of the new mixture were also determined to find physical characteristics. A Taguchi design L8 was used to search for a mixture with the best mechanical strength.

Findings

The results indicated that the integration of waste powder PA12 with calcium sulfate hemihydrate (CSH) generates appropriate particle distribution with rounded particles of PA12 that improve powder flowability. The micropores observed with less than 60 µm, facilitated binder and infiltrant penetration on 3D parts. The 60/40 (CSH-PA12) mixture with epoxy resin postprocessing was found to be the best-bonded mixture in mechanical testing, rugosity and hardness results. The new CSH-PA12 mixture resulted lighter and stronger than the CSH powder commonly used in binder jetting technology.

Originality/value

This study adds value to the polymer powder bed fusion process by using its waste in a circular process. The novel reuse of PA12 waste in an established process was achieved in an accessible and economical manner.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 January 2023

Raphael Kanyire Seidu, Shou-xiang Jiang, Benjamin Tawiah, Richard Acquaye and Ebenezer Kofi Howard

The purpose of this study is to present a systematic review of the effects of COVID-19 on the conventional textile production subsector. The emergence of the COVID-19 virus in…

Abstract

Purpose

The purpose of this study is to present a systematic review of the effects of COVID-19 on the conventional textile production subsector. The emergence of the COVID-19 virus in 2019 has subsequently caused many problems, such as unemployment, business closures, economic instability and high volatility in the global capital markets amongst others within the wider manufacturing industry including textile production.

Design/methodology/approach

Relevant secondary data are obtained from the Scopus database and Statista. Based on the data analysis of 21 seed articles, three research themes are identified: challenges in the textile industry, new material innovations or solutions and the textile industry performance.

Findings

The results reveal that the COVID-19 pandemic has affected the textile industry, disrupted the supply chains of this industry, affected profit margins, stopped employment and impacted the retail of products to customers. Aside from the negative repercussions, there are also good sides to the pandemic which, for instance, range from advanced material innovations to textiles with anti-microbial, self-cleaning and anti-bacterial properties that would limit the transfer of the virus.

Practical implications

Findings reinforced the need for effective strategies and investments in the research and development departments of the various firms in the textile industry to innovate operations and novel materials for the next global pandemic.

Originality/value

Many companies have adopted novel strategies and practices that are helping them to survive the pandemic. This study, therefore, recommends further investigation into material innovations and reimagining strategies by companies and the supply chain within the textile industry so that it is protected against future crises.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 21 February 2024

Bahareh Babaie, Mohsen Najafi and Maryam Ataeefard

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production…

Abstract

Purpose

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production method and material formulation. Chemically in situ polymerization methods are currently preferred. This paper aims to optimize the characteristics of a composite produced through emulsion polymerization using common raw materials for electrophotographic toner production.

Design/methodology/approach

Emulsion polymerization provides the possibility to optimize the physical and color properties of the final products. Response surface methodology (RSM) was used to optimize variables affecting particle size (PS), PS distribution (PSD), glass transition temperature (Tg°C), color properties (ΔE) and monomer conversion. Box–Behnken experimental design with three levels of styrene and butyl acrylate monomer ratios, carbon black pigment and sodium dodecyl sulfate surfactant was used for RSM optimization. Additionally, thermogravimetric analysis and surface morphology of composite particles were examined.

Findings

The results indicated that colorants with small PS, narrow PSDs, spherical shape morphology, acceptable thermal and color properties and a high percentage of conversion could be easily prepared by optimization of material parameters in this method. The anticipated outcome of the present inquiry holds promise as a guiding beacon toward the realization of electrographic toner of superior quality and exceptional efficacy, a vital factor for streamlined mass production.

Originality/value

To the best of the authors’ knowledge, for the first time, material parameters were evaluated to determine their impact on the characteristics of emulsion polymerized toner composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 May 2023

Wei Zhang, Chentao Liu, Jiming Yao and Shuangshuang Li

This study aims to produce a superhydrophobic fabric surface with a layered rough structure and which are resistant to droplet adhesion. Polydimethylsiloxane (PDMS) systems doped…

Abstract

Purpose

This study aims to produce a superhydrophobic fabric surface with a layered rough structure and which are resistant to droplet adhesion. Polydimethylsiloxane (PDMS) systems doped with stearic acid modified titanium dioxide (SA-TiO2) nanoparticles was sprayed onto the surface of cotton fabric.

Design/methodology/approach

This experiment therefore uses a simple method to prepare superhydrophobic textiles by spraying SA-TiO2 particles mixed with PDMS onto the surface of cotton fabrics. The effects of the ratio of stearic acid to TiO2, spraying times and tension on the apparent morphological structure and hydrophobic properties of the cotton fabric were investigated.

Findings

The results showed that the stearic acid-modified TiO2 nanoparticles were hydrophobic and more uniformly dispersed in the PDMS solution. When the modification ratio of stearic acid to TiO2 was 3:5, the water contact angle of cotton fabric was 155.48° and sliding angle was 6.67° under the applied tension for three times of spraying, showing superhydrophobicity. The fabric shows super hydrophobic and anti-adhesive properties to a wide range of liquids such as cola, dyeing liquids, tea, milk and simulated blood. The surface tension of the liquid shows a negative correlation with its adhesion to the fabric.

Research limitations/implications

The SA-TiO2 and PDMS were applied to the fabric surface by spraying, which not only gave the fabric superhydrophobic properties, but also created anti-adhesion to a wide range of droplets.

Practical implications

The superhydrophobic cotton fabrics prepared by this method showed good anti-adhesive behavior to common stains and simulated blood and can be used in the development of medical protective textiles.

Originality/value

Modification of TiO2 with stearic acid to prepare SA-TiO2 with excellent hydrophobic properties, which was mixed with PDMS to make suspensions. Fluorine-free superhydrophobic fabrics were prepared by spraying method. It also exhibited excellent anti-adhesive properties against blood, providing a reference for the preparation of self-cleaning and anti-adhesive surgical gowns.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 September 2023

Amirul Syafiq, Lilik Jamilatul Awalin, Syukri Ali and Mohd Arif

The paper aims to design the optimum formulation of the nano-titanium dioxide (TiO2) hydrophilic coating system using the synthetic polypropylene glycol (PPG), which can create…

Abstract

Purpose

The paper aims to design the optimum formulation of the nano-titanium dioxide (TiO2) hydrophilic coating system using the synthetic polypropylene glycol (PPG), which can create the reflection and absorption property.

Design/methodology/approach

TiO2 nanoparticles are used as fillers, and PPG has been blended at the proper ratio of 1PPG: 0.2TiO2. The prepared resin has been applied onto the glass substrate at different numbers of glass immersions during the dip-coating fabrication process. One-time glass immersion is labeled as T1 coating, two-time glass immersion is labeled as T2 coating and three-time glass immersion is labeled as T3 coating. All the prepared coating systems were left dry at ambient temperature.

Findings

T3 coating showed the lowest reading of WCA value at 40.50°, due to higher surface energy at 61.73 mN/m. The T3 coating also shows the greatest absorbance property among the prepared coating systems among the prepared coating. In terms of reflectance property, the T2 coating system has great reflectance in UV region and near-infrared region, which is 16.47% and 2.77 and 2.73%, respectively. The T2 coating also has great optical transmission about 75.00% at the visible region.

Research limitations/implications

The development of thermal insulation coating by studying the relationship between convection heat and reflectance at different wavelengths of incident light.

Practical implications

The developed coating shows high potential for glass window application.

Originality/value

The application of the hydrophilic coating on light absorption, reflectance and transmission at different wavelengths.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2023

Ana Aline Mendes Paim, Morgana Carneiro de Andrade and Fernanda Steffens

Given the COVID-19 Pandemic outbreak and the role of medical textiles for protection, this study aims to identify the leading research foci on using textile materials for personal…

Abstract

Purpose

Given the COVID-19 Pandemic outbreak and the role of medical textiles for protection, this study aims to identify the leading research foci on using textile materials for personal protection in pandemic situations.

Design/methodology/approach

A systematic review and systemic analysis of the literature on the subject were performed using the process knowledge development – constructivist (ProKnow-C) methodology.

Findings

A bibliographic portfolio with 16 relevant studies was obtained. This portfolio represents the main focus of this research field, including the main filtration mechanisms, ways of disinfecting N95 respirators and proposed methods to evaluate the filtration efficiency of different materials with potential for mask development.

Originality/value

To the best of the authors’ knowledge, this is the first time the ProKnow-C methodology was used in the textile field. Thus, future studies can benefit from using the Proknow-C for selecting and analyzing relevant textile studies following a systematic approach.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 June 2023

M. Hassanein, M. Abd El Rahm, H. M. Abd El Bary and H. Abd El-Wahab

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Abstract

Purpose

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Design/methodology/approach

Different dispersing agents through the reaction of glycerol monooleate and toluene diisocyanate were prepared and then performed by using three different polyols (succinic anhydride-modified polyethylene glycol PEG 600, EO/PO Polyether Monoamine and p-chloro aniline Polyether Monoamine), to obtain three different dispersing agents for water-based titanium dioxide inkjet inks. The prepared dispersants were characterized using FTIR to monitor the reaction progress. Then the prepared dispersants were formulated in titanium dioxide inkjet inks formulation and characterized by particle size, dynamic surface tension, transmission electron microscopy, viscosity and zeta potential against commercial dispersants. Also, the study was extended to evaluate the printed polyester by using the prepared inks according to washing and crock fastness.

Findings

The obtained results showed that p-chloro aniline Polyether Monoamine (J) and succinic anhydride modified polyethylene glycol PEG 600 (H) dispersants provided optimum performance as compared to commercial standards especially, particle size distribution data while EO/PO Polyether Monoamine based on dispersant was against and then failed with the wettability and dispersion stability tests.

Practical implications

These ink formulations could be used for printing on cotton fabric by DTG technique of printing and can be used for other types of fabrics.

Originality/value

The newly prepared ink formulation for digital textile printing based on synthesized polyurethane prepolymers has the potential to be promising in this type of printing inks, to prevent clogging of nozzles on the printhead and to improve the print quality on the textile fiber.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 May 2023

Yousong Wang, Enqin Gong, Yangbing Zhang, Yao Yao and Xiaowei Zhou

The need for infrastructure is growing as urbanization picks up speed, and the infrastructure REITs financing model has been crucial in reviving the vast infrastructure stock…

Abstract

Purpose

The need for infrastructure is growing as urbanization picks up speed, and the infrastructure REITs financing model has been crucial in reviving the vast infrastructure stock, alleviating the pressure on government funds and diversifying investment entities. This study aims to propose a framework to better assess the risks of infrastructure REITs, which can serve for the researchers and the policy makers to propose risk mitigation strategies and policy recommendations more purposively to facilitate successful implementation and long-term development of infrastructure REITs.

Design/methodology/approach

The infrastructure REITs risk evaluation index system is established through literature review and factor analysis, and the optimal comprehensive weight of the index is calculated using the combination weight. Then, a risk evaluation cloud model of infrastructure REITs is constructed, and experts quantify the qualitative language of infrastructure REITs risks. This paper verifies the feasibility and effectiveness of the model by taking a basic REITs project in China as an example. This paper takes infrastructure REITs project in China as an example, to verify the feasibility and effectiveness of the cloud evaluation method.

Findings

The research outcome shows that infrastructure REITs risks manifest in the risk of policy and legal, underlying asset, market, operational and credit. The main influencing factors in terms of their weights are tax policy risk, operation and management risk, liquidity risk, termination risk and default risk. The financing project is at a higher risk, and the probability of risk is 64.2%.

Originality/value

This research contributes to the existing body of knowledge by supplementing a set of scientific and practical risk evaluation methods to assess the potential risks of infrastructure REITs project, which contributes the infrastructure financing risk management system. Identify key risk factors for infrastructure REITs with underlying assets, which contributes to infrastructure REITs project management. This research can help relevant stakeholders to control risks throughout the infrastructure investment and financing life cycle, provide them with reference for investment and financing decision-making and promote more sustainable and healthy development of infrastructure REITs in developing countries.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 December 2022

Hoa Vo

This study aims to explore the impact of experiencing virtual reality (VR) and three-dimensional (3D) printing during the design process on the creativity of interior design…

Abstract

Purpose

This study aims to explore the impact of experiencing virtual reality (VR) and three-dimensional (3D) printing during the design process on the creativity of interior design students in a luminaire design project.

Design/methodology/approach

This study used the case-study approach within the context of a nine-week luminaire design project. Collected data included self-reported interest and engagement of students from a Qualtrics questionnaire and the ratings of their creativity via the Creative Product Semantic Scale (CPSS) with two judges.

Findings

Descriptive statistics from the Qualtrics questionnaire indicated an overall high level of student interest and engagement with the VR and 3D printing learning experience. Paired t-tests from CPSS ratings of the two judges showed a moderate increase in novelty and a significant increase in style with the introduction of VR and 3D printing technologies, respectively.

Research limitations/implications

Spearman’s correlations (rho) showed no statistical evidence for the relationships between CPSS ratings for creativity and students’ self-reported interest and engagement in VR and 3D printing learning experience.

Practical implications

Ample access time to VR technology and sufficient control over the 3D printing process are important for effective applications of Industry 4.0 technologies in organizations.

Social implications

This study dissected the confounding variables in its results as practical considerations for intergrading VR and 3D printing technologies for organizations in Industry 4.0.

Originality/value

This study acknowledged VR and 3D printing technologies as simulants for interest and engagement, which benefit creativity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 40