Search results

1 – 10 of 599
Article
Publication date: 23 August 2011

Montassar Ezzine, Mohamed Darouach, Harouna Souley Ali and Hassani Messaoud

The purpose of this paper is to propose solutions for both discrete‐time and frequency‐domain designs of unbiased H functional filters for discrete‐time linear systems affected…

Abstract

Purpose

The purpose of this paper is to propose solutions for both discrete‐time and frequency‐domain designs of unbiased H functional filters for discrete‐time linear systems affected by bounded norm energy disturbances.

Design/methodology/approach

The discrete‐time procedure design is based on the unbiasedness of the functional filter using a Sylvester equation; then the problem is expressed in a singular system one and is solved in terms of linear matrix inequalities (LMIs). The frequency procedure design is derived from discrete‐time domain results by defining some useful matrix fraction descriptions and mainly, establishing the useful and equivalent form of the connecting relationship that parameterizes the dynamics behavior between discrete‐time and z‐domain.

Findings

The performance of the proposed approach is illustrated with the aid of a practical example. The proposed methods are easily implementable and concern a more general class of systems, as the transformation of the system in a singular one permits to treat the problem of perturbance advanced.

Originality/value

First, the order of this filter is equal to the dimension of the vector to be estimated, which is benefit in case of control purpose (reduction of time calculation comparing to the full order one). Second, all recent works on the functional filtering consider systems which permit to avoid to have advanced perturbation term in the error dynamics; the authors propose here an approach which resolves the H filtering problem even when the term is present. In addition, it permit to consider more general class of discrete‐time systems. Furthermore, the LMI approaching the discrete‐time case permits to handle with more general problem (H, L2H) than the classical Riccati one.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 4 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 26 August 2014

Dejan Mirković, Predrag Petković and Vančo Litovski

The purpose of this paper is to design a tool for IIR digital filters obtained from analog prototypes, which preserves simultaneously the amplitude and the group delay response…

Abstract

Purpose

The purpose of this paper is to design a tool for IIR digital filters obtained from analog prototypes, which preserves simultaneously the amplitude and the group delay response.

Design/methodology/approach

A new s-to-z transform is developed based on a second order formula used for numerical integration of differential equations. Stability of the newly obtained transfer functions in the z-domain is proved to be preserved. Distortions introduced by the new transform into the original amplitude and group delay responses are studied.

Findings

The new formula, when implemented to all-pole prototypes, exhibits lower selectivity than the original while reducing the pass-band group delay distortions. In the same time its structure is importantly simpler than the functions obtained by the well-known bilinear transform. When implemented to a prototype having “all kinds” of transmission zeros the resulting filter has almost ideally the same characteristic as the prototype.

Research limitations/implications

The new transform may be used exclusively to synthesize even order filters. The new function is twice the order of the analog prototype. This kind of transformations are used to design IIR digital filters only. Low-pass transfer functions were studied being prototypes for all other cases.

Originality/value

This is a new result never mentioned in the literature. Its effectiveness is confined to a niche problem when simultaneous sharp selectivity and low group delay distortions are sought.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 1990

H. Van der Auweraer and J. Leuridan

The paper deals with the application of a frequency domain maximum likelihood estimation method for linear system identification in the field of flutter data analysis. Unlike…

Abstract

The paper deals with the application of a frequency domain maximum likelihood estimation method for linear system identification in the field of flutter data analysis. Unlike methods based on least squares error minimization, the proposed method takes into account the disturbing process or measurement noise on as well the input as the output of the device under test. This enables the optimal and unbiased identification of the parameters in the linear system model. A few examples of the identification of the system parameters of a mechanical single input single output system from flutter test data are discussed and compared to more classical linear estimation methods.

Details

Aircraft Engineering and Aerospace Technology, vol. 62 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 25 February 2014

Shuai Na, Guo-an Tang and Li-fen Chen

Orbital maneuver of the spacecraft can cause large-amplitude vibration of its flexible solar array, which leads to large dynamic stress and a risk of structural failure and…

Abstract

Purpose

Orbital maneuver of the spacecraft can cause large-amplitude vibration of its flexible solar array, which leads to large dynamic stress and a risk of structural failure and fatigue failure. This paper aims to provide a method to reduce such vibration.

Design/methodology/approach

Through controlling the rotation at the root of the solar array, a method of vibration reduction is proposed using zero-placement input shaping technique. Experimental research on a beam scale model of the solar array is performed to verify the effectiveness of the method. Simulation of a detailed example is carried out to investigate whether the method can be applied in engineering.

Findings

The experimental results demonstrate the effectiveness of such method. The simulation results indicate that, by adopting the presented method, the vibration induced by orbital maneuver can be diminished remarkably.

Research limitations/implications

Studies on the robustness of the method are left for further work. Additionally, since only the first-order bending vibration of the flexible solar array is eliminated, further improvements are required such that the stated method can be applied to suppress multi-mode vibration.

Practical implications

An effective method is proposed for spacecraft designers planning to actively suppress the vibration of flexible solar array during the process of orbital maneuver.

Originality/value

This paper fulfils a source of theoretical and experimental studies for orbital maneuver system design and offers practical help for spacecraft designers.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 January 2017

Zhiyong Zeng, Xiaoliang Jin and Rongxiang Zhao

The model for digitally controlled three-phase pulse width modulation (PWM) boost rectifiers is a sampled data model, which is different from the continuous time domain models…

Abstract

Purpose

The model for digitally controlled three-phase pulse width modulation (PWM) boost rectifiers is a sampled data model, which is different from the continuous time domain models presented in previous studies. The controller, which is tuned according to the model in continuous time domain and discretized by approximation methods, may exhibit some unpredictable performances and even result in unstable systems under some extreme situations. Consequently, a small-signal discrete-time model of digitally controlled three-phase PWM boost rectifier is required. The purpose of this paper is to provide a simple but accurate small-signal discrete-time model of digital controlled three-phase PWM boost rectifier, which explains the effect of the sampling period, modulator and time delays on system dynamic and improves the control performance.

Design/methodology/approach

Based on the Laplace domain analysis and the waveforms of up-down-count modulator, the small signal model of digital pulse width modulation (DPWM) in the Laplace domain is presented. With a combination of state-space average and a discrete-time modeling technique, a simplified large signal discrete time model is developed. With rotation transformation and feed-forward decoupling, the large-signal model is decoupled into a single input single output system with rotation transformation. Then, an integrated small signal model in the Laplace domain is constructed that included the time delay and modulation effect. Implementing the modified z-transform, a small-signal discrete-time model is derived from the integrated small signal model.

Findings

In a digital control system, besides the circuit parameters, the location of pole of open-loop transfer function is also related to system sampling time, affecting the system stability, and the time delay determines the location of the zero of open-loop transfer function, affecting the system dynamic. In addition to the circuit parameters discussed in previous literature, the right half plane (RHP) zero is also determined by the sampling period and the time delay. Furthermore, the corner frequency of the RHP zero is mainly determined by the sampling period.

Originality/value

The model developed in this paper, accounting for the effect of the sampling period, modulator and time delays on the system dynamic, give a sufficient insight into the behavior of the digitally controlled three-phase PWM rectifier. It can also explain the effect of sampling period and control delay time on system dynamic, accurately predict the system stability boundary and determine the oscillation frequency of the current loop in critical stable. The experimental results verify that the model is a simple and accurate control-oriented small-signal discrete-time model for the digitally controlled three-phase PWM boost rectifier.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 July 2019

Ruchi Rashmi and Shweta Jagtap

Traditionally, industrial power supplies have been exclusively controlled through analog control to sustain high reliability with low cost. However, with the perpetual decrement…

Abstract

Purpose

Traditionally, industrial power supplies have been exclusively controlled through analog control to sustain high reliability with low cost. However, with the perpetual decrement in cost of digital controllers, the feasibility of a digitally controlled switch mode power supply has elevated significantly. This paper aims to outline the challenges related to the design of digital proportional-integral (PI) controlled synchronous rectifier (SR) buck converter by comparing controller performance in continuous and discrete time. The trapezoidal approximation-based digital PI control is designed for low voltage and high-frequency SR buck converter operating under continuous conduction mode.

Design/methodology/approach

The analog and digital controller are designed using a SISO tool of MATLAB. Here, zero-order hold transform is used to convert the transfer function from continuous to discrete time. Frequency and time domain analysis of continuous plant, discrete plant and close loop system is performed. The designed digital PI control is simulated in MATLAB Simulink. The simulated results is also verified on hardware designed around digital signal processing control.

Findings

The continuous and discrete control loops are validated with multiple tests in the time and frequency domain. The detailed steady state theoretical analysis and performance of the SR buck converter is presented and verified by simulation. It is found that the delay in digital control loop results in a low phase margin. This phase margin decreases with higher bandwidth. The hardware experiments with the digital control loop are carried out on a 10 W prototype. The chosen parameters for the SR buck converter are found to be optimum for steady and transient state response.

Originality/value

This paper compares the digital and analog control approach of compensator design. It focuses on the implications created at the time of transforming the control design from continuous to discrete time. Further, it also focuses on the selection of parameters such as phase margin, bandwidth and low pass filter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 August 2012

Sajjad Shoja Majidabad and Heydar Toosian Shandiz

The purpose of this paper is to develop sliding mode control with linear and nonlinear manifolds in discrete‐time domain for robot manipulators.

Abstract

Purpose

The purpose of this paper is to develop sliding mode control with linear and nonlinear manifolds in discrete‐time domain for robot manipulators.

Design/methodology/approach

First, a discrete linear sliding mode controller is designed to an n‐link robot based on Gao's reaching law. In the second step, a discrete terminal sliding mode controller is developed to design a finite time and high precision controller. The stability analysis of both controllers is presented in the presence of model uncertainties and external disturbances. Finally, sampling time effects on the continuous‐time system outputs and sliding surfaces are discussed.

Findings

Computer simulations on a three‐link SCARA robot show that the proposed controllers are robust against model uncertainties and external disturbance. It was also shown that the sampling time has important effects on the closed loop system stability and convergence.

Practical implications

The proposed controllers are low cost and easily implemented in practice in comparison with continuous‐time ones.

Originality/value

The novelty associated with this paper is the development of an approach to finite time and robust control of n‐link robot manipulators in discrete‐time domain. Also, obtaining an upper bound for the sampling time is another contribution of this work.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 5 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 October 2006

Joakim Wikner

To provide an overview of how a number of frequently used smoothing‐based forecasting techniques can be modelled for use in dynamic analysis of production‐inventory systems.

1247

Abstract

Purpose

To provide an overview of how a number of frequently used smoothing‐based forecasting techniques can be modelled for use in dynamic analysis of production‐inventory systems.

Design/methodology/approach

The smoothing techniques are modelled using transfer functions and state space representation. Basic control theory is used for analysing the dynamic properties.

Findings

A set of expressions are derived for the smoothing techniques and dynamic properties are identified.

Practical implications

Dynamic properties are important in many applications. It is shown that the different smoothing techniques can have very different influences on the dynamic behaviour and therefore should be considered as a factor when smoothing parameters are decided on.

Originality/value

Dynamic behaviour of production‐inventory systems can be analysed using control theory based on, e.g. transfer functions or state space models. In this paper a set of models for five common smoothing techniques are analysed and their respective dynamic properties are highlighted.

Details

Kybernetes, vol. 35 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 January 2010

A. El Aroudi, E. Alarcón, E. Rodríguez and R. Leyva

The purpose of this paper is to characterize the nonlinear dynamical behaviour of a buck‐based power‐switching amplifier controlled by fixed frequency and pulse width modulation…

Abstract

Purpose

The purpose of this paper is to characterize the nonlinear dynamical behaviour of a buck‐based power‐switching amplifier controlled by fixed frequency and pulse width modulation with a proportional‐integral compensator. The system has two forcing frequencies and one natural frequency and therefore it is characterized by three different scales of time. When the frequencies are far one from the other, quasi‐static approximation can be used. However, as the switching and the modulating frequencies become closer, this approximation is not valid and the results based on it lead to erroneous conclusions about the dynamics of the system.

Design/methodology/approach

A discrete time approach is used to reveal the interesting nonlinear phenomena that the system can exhibit. From numerical simulations using the switched model, it is shown that the system can present period‐doubling bifurcation at the fast scale (switching frequency).

Findings

An exact solution discrete‐time model is derived, able to predict accurately the nonlinear dynamical behaviour of the system.

Originality/value

The discrete time model is obtained without making quasi‐static approximation. The exact switched model is used to validate the discrete‐time model obtained. Finally, the effect of the switching frequency instabilities on the output voltage spectrum has been explored.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 September 2009

K.M. Gawrylczyk and M. Kugler

The purpose of this paper is to present sensitivity analysis of electromagnetic fields in the time‐domain.

Abstract

Purpose

The purpose of this paper is to present sensitivity analysis of electromagnetic fields in the time‐domain.

Design/methodology/approach

The method utilizing adjoint models is commonly used to evaluate sensitivity. In connection with widely applied finite element method, the time‐stepping scheme for discretization of time functions is used.

Findings

The proposed semi‐discrete method allows us to obtain time‐domain solution without time‐stepping. For space discretization, the authors use finite elements, as usual. The semi‐discrete method delivers analytical and continuous solution for any given time of analysis, which has a form of exponential functions. In order to obtain an analytical formula, there is necessary the integration of sensitivity equation. The paper finds possible solutions of this problem, either the application of Zassenhaus formula or improvement of commutation properties of two matrices.

Research limitations/implications

Drawback of this method is matrices which are losing their symmetry and are no more banded. All calculations in this work were carried out with fully assigned matrices. Comparison of the efficiency of the semi‐discrete method with classical method shows that, despite the high demand for memory, this method can compete in relation to finite elements with the time‐stepping.

Practical implications

The resultant gradient information may be used for solving inverse problems, such as optimization of magnetic circuits and identification of material conductivity distributions.

Originality/value

The paper offers compact formula for sensitivity evaluation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 599