Search results

1 – 6 of 6
To view the access options for this content please click here
Article
Publication date: 23 August 2011

Montassar Ezzine, Mohamed Darouach, Harouna Souley Ali and Hassani Messaoud

The purpose of this paper is to propose solutions for both discrete‐time and frequency‐domain designs of unbiased H functional filters for discrete‐time linear systems…

Abstract

Purpose

The purpose of this paper is to propose solutions for both discrete‐time and frequency‐domain designs of unbiased H functional filters for discrete‐time linear systems affected by bounded norm energy disturbances.

Design/methodology/approach

The discrete‐time procedure design is based on the unbiasedness of the functional filter using a Sylvester equation; then the problem is expressed in a singular system one and is solved in terms of linear matrix inequalities (LMIs). The frequency procedure design is derived from discrete‐time domain results by defining some useful matrix fraction descriptions and mainly, establishing the useful and equivalent form of the connecting relationship that parameterizes the dynamics behavior between discrete‐time and z‐domain.

Findings

The performance of the proposed approach is illustrated with the aid of a practical example. The proposed methods are easily implementable and concern a more general class of systems, as the transformation of the system in a singular one permits to treat the problem of perturbance advanced.

Originality/value

First, the order of this filter is equal to the dimension of the vector to be estimated, which is benefit in case of control purpose (reduction of time calculation comparing to the full order one). Second, all recent works on the functional filtering consider systems which permit to avoid to have advanced perturbation term in the error dynamics; the authors propose here an approach which resolves the H filtering problem even when the term is present. In addition, it permit to consider more general class of discrete‐time systems. Furthermore, the LMI approaching the discrete‐time case permits to handle with more general problem (H, L2H) than the classical Riccati one.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 4 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

To view the access options for this content please click here
Article
Publication date: 11 July 2019

Kai Zhao, Li-Guo Tan and Shen-Min Song

This paper aims to give the centralized and distributed fusion estimator for nonlinear multi-sensor networked systems with packet loss compensation and correlated noises…

Abstract

Purpose

This paper aims to give the centralized and distributed fusion estimator for nonlinear multi-sensor networked systems with packet loss compensation and correlated noises and give the corresponding square-root cubature Kalman filter.

Design/methodology/approach

Based on the Gaussian approximation recursive filter framework, the authors derive the centralized fusion filter and using the projection theorem, the authors derive the centralized fusion smoother. Then, based on the fast batch covariance intersection fusion algorithm, the authors give the corresponding results for distributed fusion estimators.

Findings

Designing the fusion estimators for nonlinear multi-sensor networked systems with packet loss compensation and correlated noises is necessary. It is useful for general nonlinear systems.

Originality/value

Throughout the whole study, the main highlights of this paper are as follows: packet loss compensation and correlated noises are considered in nonlinear multi-sensor networked systems. There are no relevant conclusions in the existing literature; centralized and distributed fusion estimators are derived based on the above system; for the posterior covariance with compensation factor and correlated noises, a new square-root factor of the error covariance is derived; and the new square-root factor of the error covariance is used to replace the numerical implementation of the covariance in cubature Kalman filter (CKF), which simplified the problem in calculating the posterior covariance in CKF.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 31 May 2013

Mejda Mansouri, Latifa Boutat‐Baddas, Mohamed Darouach and Hassani Messaoud

The purpose of this paper is to propose a decentralized observer for large‐scale singular systems.

Abstract

Purpose

The purpose of this paper is to propose a decentralized observer for large‐scale singular systems.

Design/methodology/approach

In this paper, the authors investigate the problem of observers' design for large‐scale singular systems. The proposed decentralized observer is based on a new parameterization of the generalized Sylvester equation solution. The considered system is partitioned into small‐sizes interconnected subsystems with unknown interconnections.

Findings

A decentralized observer based on new parameterization of generalized Sylvester equation. The performance of the proposed approach is illustrated by a numerical example.

Originality/value

The proposed approach unites the full‐order, the reduced‐order and the minimal order observer design for large‐scale system. The conditions of the existence of this observer are given in the linear matrix inequalities (LMI) form.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 6 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

To view the access options for this content please click here
Article
Publication date: 26 June 2007

WeiMin Tao, MingJun Zhang, Ou Ma and XiaoPing Yun

The purpose of this paper is to investigate the vibration suppression of industrial track robot and propose a practical solution.

Abstract

Purpose

The purpose of this paper is to investigate the vibration suppression of industrial track robot and propose a practical solution.

Design/methodology/approach

Root‐cause analysis through dynamic modeling, and vibration suppression using the acceleration smoother.

Findings

The vibration is due to insufficient damping based on the model analysis. The solution achieved significant performance improvement without redesign of robot hardware and controller.

Research limitations/implications

The design of the proposed acceleration smoother is still empirical based, which is unable to achieve optimal design.

Practical implications

This solution is very easy to implement. It is robust, reliable and is able to generate consistent results.

Originality/value

A very practical industrial solution, especially useful for upgrading the existing systems in the field without redesign the hardware and controller.

Details

Industrial Robot: An International Journal, vol. 34 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 16 March 2010

Jafar Keighobadi, Mohammad B. Menhaj and Mansour Kabganian

The purpose of this paper is to focus on perfect trajectory tracking control of 2 DOF non‐holonomic mobile robots in which the guidance and control commands are imposed…

Abstract

Purpose

The purpose of this paper is to focus on perfect trajectory tracking control of 2 DOF non‐holonomic mobile robots in which the guidance and control commands are imposed through independent driver wheels. Model‐based nonlinear controllers for these robots with unknown parameters require estimation of a specified set of the robot parameters. The effects of the proposed model dynamics in both local and global coordinate systems are fully examined on the parameter estimation and tracking performance.

Design/methodology/approach

Design of suitable feedback linearization (FL) controllers for trajectory tracking control of wheeled mobile robots (WMRs) is first reviewed. A FL controller whose parameters are tuned using fuzzy computations (fuzzy if‐then rules) is then developed. In the line of the other contributions of the paper, a pure fuzzy controller that is merely based on fuzzy if‐then rules is proposed to trajectory tracking control of the mobile robots.

Findings

Use of global dynamics for designing a suitable FL control system leads to a perfect compensation for initial off‐tracks. Furthermore, the estimated parameters are unbiased because the corresponding regressor/signal matrix indicates a high rank of persistent excitation. Fuzzy tuning of the controller instead of keeping the gains fixed makes the overall system more robust against measurement noises while upper bounds and fluctuations of the input torques are both remarkably reduced. The pure fuzzy controller is naturally independent of the robot dynamics and therefore, the necessity of parameter estimation algorithm is removed.

Originality/value

The paper provides some new nonlinear controllers for WMRs, in order to make perfect trajectory tracking and initial off‐tracks compensation.

Details

Kybernetes, vol. 39 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

To view the access options for this content please click here
Article
Publication date: 19 July 2018

Imen Maalej, Donia Ben Halima Abid and Chokri Rekik

The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS…

Abstract

Purpose

The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS) fuzzy model subjected to stochastic noise and actuator faults.

Design/methodology/approach

An IT2 fuzzy augmented state observer is first developed to estimate simultaneously the system states and the actuator faults since this estimation is required for the design of the FTC control law. Furthermore, based on the information of the states and the faults estimate, an IT2 fuzzy state feedback controller is conceived to compensate for the faults effect and to ensure a good tracking performance between the healthy system and the faulty one. Sufficient conditions for the existence of the IT2 fuzzy controller and the IT2 fuzzy observer are given in terms of linear matrix inequalities which can be solved using a two-step computing procedure.

Findings

The paper opted for simulation results which are applied to the three-tank system. These results are presented to illustrate the effectiveness of the proposed FTC strategy.

Originality/value

In this paper, the problem of active FTC design for noisy and faulty nonlinear system represented by IT2 TS fuzzy model is treated. The developed IT2 fuzzy fault tolerant controller is designed such that it can guarantee the stability of the closed-loop system. Moreover, the proposed controller allows to accommodate for faults, presents a satisfactory state tracking performance and outperforms the traditional type-1 fuzzy fault tolerant controller.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 6 of 6