Search results

1 – 10 of over 31000
Book part
Publication date: 18 July 2016

Matthew Lindsey and Robert Pavur

Research in the area of forecasting and stock inventory control for intermittent demand is designed to provide robust models for the underlying demand which appears at random…

Abstract

Research in the area of forecasting and stock inventory control for intermittent demand is designed to provide robust models for the underlying demand which appears at random, with some time periods having no demand at all. Croston’s method is a popular technique for these models and it uses two single exponential smoothing (SES) models which involve smoothing constants. A key issue is the choice of the values due to the sensitivity of the forecasts to changes in demand. Suggested selections of the smoothing constants include values between 0.1 and 0.3. Since an ARIMA model has been illustrated to be equivalent to SES, an optimal smoothing constant can be selected from the ARIMA model for SES. This chapter will conduct simulations to investigate whether using an optimal smoothing constant versus the suggested smoothing constant is important. Since SES is designed to be an adapted method, data are simulated which vary between slow and fast demand.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-78635-534-8

Keywords

Article
Publication date: 1 May 2000

D.S. Liyanapathirana, A.J. Deeks and M.F. Randolph

In finite element analysis of pile driving, the nodes of the finite element mesh are the most important locations for output stresses. Especially at the pile‐soil interface, it is…

1032

Abstract

In finite element analysis of pile driving, the nodes of the finite element mesh are the most important locations for output stresses. Especially at the pile‐soil interface, it is essential to obtain accurate nodal stresses. Several global and local stress smoothing methods available in the literature were reviewed and examined. Global methods are found to be computationally expensive, so results obtained from several local stress smoothing methods are compared. It is shown that accurate nodal stresses can be obtained by approximating the stress distribution inside four‐element patches by a polynomial with order equal to the order of the shape functions. Equally good results can be obtained by approximating the stress distribution inside each element by a bilinear surface. When a method taking into account both equilibrium and boundary conditions was applied, a set of ill‐conditioned matrices was produced for the four‐element patches. Such methods are therefore not recommended.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2022

Can Ban, Na Na Pu, Yi Fei Zhang and Ma Wentao

This article aims to develop an accurate and efficient meshfree Galerkin method based on the strain smoothing technique for linear elastic continuous and fracture problems.

Abstract

Purpose

This article aims to develop an accurate and efficient meshfree Galerkin method based on the strain smoothing technique for linear elastic continuous and fracture problems.

Design/methodology/approach

This paper proposed a generalized linear smoothed meshfree method (LSMM), in which the compatible strain is reconstructed by the linear smoothed strains. Based on the idea of the weighted residual method and employing three linearly independent weight functions, the linear smoothed strains can be created easily in a smoothing domain. Using various types of basic functions, LSMM can solve the linear elastic continuous and fracture problems in a unified way.

Findings

On the one hand, the LSMM inherits the properties of high efficiency and stability from the stabilized conforming nodal integration (SCNI). On the other hand, the LSMM is more accurate than the SCNI, because it can produce continuous strains instead of the piece-wise strains obtained by SCNI. Those excellent performances ensure that the LSMM has the capability to precisely track the crack propagation problems. Several numerical examples are investigated to verify the accurate, convergence rate and robustness of the present LSMM.

Originality/value

This study provides an accurate and efficient meshfree method for simulating crack growth.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 16 December 2009

Zongwu Cai, Jingping Gu and Qi Li

There is a growing literature in nonparametric econometrics in the recent two decades. Given the space limitation, it is impossible to survey all the important recent developments…

Abstract

There is a growing literature in nonparametric econometrics in the recent two decades. Given the space limitation, it is impossible to survey all the important recent developments in nonparametric econometrics. Therefore, we choose to limit our focus on the following areas. In Section 2, we review the recent developments of nonparametric estimation and testing of regression functions with mixed discrete and continuous covariates. We discuss nonparametric estimation and testing of econometric models for nonstationary data in Section 3. Section 4 is devoted to surveying the literature of nonparametric instrumental variable (IV) models. We review nonparametric estimation of quantile regression models in Section 5. In Sections 2–5, we also point out some open research problems, which might be useful for graduate students to review the important research papers in this field and to search for their own research interests, particularly dissertation topics for doctoral students. Finally, in Section 6 we highlight some important research areas that are not covered in this paper due to space limitation. We plan to write a separate survey paper to discuss some of the omitted topics.

Details

Nonparametric Econometric Methods
Type: Book
ISBN: 978-1-84950-624-3

Article
Publication date: 21 September 2015

Hongyu Zhao, Zhelong Wang, Qin Gao, Mohammad Mehedi Hassan and Abdulhameed Alelaiwi

The purpose of this paper is to develop an online smoothing zero-velocity-update (ZUPT) method that helps achieve smooth estimation of human foot motion for the ZUPT-aided…

Abstract

Purpose

The purpose of this paper is to develop an online smoothing zero-velocity-update (ZUPT) method that helps achieve smooth estimation of human foot motion for the ZUPT-aided inertial pedestrian navigation system.

Design/methodology/approach

The smoothing ZUPT is based on a Rauch–Tung–Striebel (RTS) smoother, using a six-state Kalman filter (KF) as the forward filter. The KF acts as an indirect filter, which allows the sensor measurement error and position error to be excluded from the error state vector, so as to reduce the modeling error and computational cost. A threshold-based strategy is exploited to verify the detected ZUPT periods, with the threshold parameter determined by a clustering algorithm. A quantitative index is proposed to give a smoothness estimate of the position data.

Findings

Experimental results show that the proposed method can improve the smoothness, robustness, efficiency and accuracy of pedestrian navigation.

Research limitations/implications

Because of the chosen smoothing algorithm, a delay no longer than one gait cycle is introduced. Therefore, the proposed method is suitable for applications with soft real-time constraints.

Practical implications

The paper includes implications for the smooth estimation of most types of pedal locomotion that are achieved by legged motion, by using a sole foot-mounted commercial-grade inertial sensor.

Originality/value

This paper helps realize smooth transitions between swing and stance phases, helps enable continuous correction of navigation errors during the whole gait cycle, helps achieve robust detection of gait phases and, more importantly, requires lower computational cost.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 1 September 2022

Kang Min, Fenglei Ni, Guojun Zhang, Xin Shu and Hong Liu

The purpose of this paper is to propose a smooth double-spline interpolation method for six-degree-of-freedom rotational robot manipulators, achieving the global C2 continuity of…

Abstract

Purpose

The purpose of this paper is to propose a smooth double-spline interpolation method for six-degree-of-freedom rotational robot manipulators, achieving the global C2 continuity of the robot trajectory.

Design/methodology/approach

This paper presents a smooth double-spline interpolation method, achieving the global C2 continuity of the robot trajectory. The tool center positions and quaternion orientations are first fitted by a cubic B-spline curve and a quartic-polynomial-based quaternion spline curve, respectively. Then, a parameter synchronization model is proposed to realize the synchronous and smooth movement of the robot along the double spline curves. Finally, an extra u-s function is used to record the relationship between the B-spline parameter and its arc length parameter, which may reduce the feed rate fluctuation in interpolation. The seven segments jerk-limited feed rate profile is used to generate motion commands for algorithm validation.

Findings

The simulation and experimental results demonstrate that the proposed method is effective and can generate the global C2-continuity robot trajectory.

Originality/value

The main contributions of this paper are as follows: guarantee the C2 continuity of the position path and quaternion orientation path simultaneously; provide a parameter synchronization model to realize the synchronous and smooth movement of the robot along the double spline curves; and add an extra u-s function to realize arc length parameterization of the B-spline path, which may reduce the feed rate fluctuation in interpolation.

Details

Assembly Automation, vol. 42 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 24 June 2020

Awad Elsayed Awad Ibrahim, Tarek Abdelfattah and Khaled Hussainey

The authors examine whether managers switch from artificial income smoothing using discretionary accruals to real income smoothing around corporate governance reform in Egypt.

Abstract

Purpose

The authors examine whether managers switch from artificial income smoothing using discretionary accruals to real income smoothing around corporate governance reform in Egypt.

Design/methodology/approach

The sample comprises 61 non-financial companies listed on the Egyptian Stock Exchange for the years 2004–2011. The authors use discretionary accruals as a proxy for artificial income smoothing and income/loss from asset sales as a proxy for real income smoothing.

Findings

The authors offer a significant contribution to accounting literature by providing new empirical evidence on the trade-off between real smoothing technique (e.g. income/loss from asset sales) and discretionary accruals around governance reform in a developing country.

Research limitations/implications

This study suffers from some limitations. First, the study sample is limited to only 338 observations. However, this is due to collecting the data manually and to the small number of listed firms during the study period. Second, the study period ended in 2011 due to the unprecedented political instability after the 2011 Egyptian people revolution. Third, although this study examines the effect of corporate governance, not all the governance aspects have been examined in the study models due to the lack of data.

Practical implications

First, the results of the total samples reveal that managers prefer real income smoothing than accruals income smoothing. This result may confirm the literature arguments on the advantages of REM methods over AEM methods. Cohen et al. (2008) find that firms switch to manage earnings using REM methods and explain that REM methods are harder to detect because they depend on operating decisions (Schipper, 1989). REM can be undertaken anytime during the year (Gunny, 2010). Besides, REM could not be deemed a violation of accounting standards or regulations (MyVay, 2006).

Originality/value

The authors offer a significant contribution to accounting literature by providing new empirical evidence on the trade-off between real smoothing technique (e.g. income/loss from asset sales) and discretionary accruals around governance reform in a developing country.

Details

Journal of Applied Accounting Research, vol. 21 no. 4
Type: Research Article
ISSN: 0967-5426

Keywords

Article
Publication date: 4 July 2023

Jiayu Qin, Nengxiong Xu and Gang Mei

In this paper, the smoothed point interpolation method (SPIM) is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling…

Abstract

Purpose

In this paper, the smoothed point interpolation method (SPIM) is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling the large-scale nonlinear deformation problems of geological bodies.

Design/methodology/approach

In this paper, the SPIM is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling the large-scale nonlinear deformation problems of geological bodies.

Findings

A simple slope model with different mesh sizes is used to verify the performance of the efficient face-based SPIM. The first accelerating strategy greatly enhances the computational efficiency of solving the large-scale slope deformation. The second accelerating strategy effectively improves the convergence of nonlinear behavior that occurred in the slope deformation.

Originality/value

The designed efficient face-based SPIM can enhance the computational efficiency when analyzing large-scale nonlinear slope deformation problems, which can help to predict and prevent potential geological hazards.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2014

George A. Gravvanis and Christos K. Filelis-Papadopoulos

The purpose of this paper is to propose multigrid methods in conjunction with explicit approximate inverses with various cycles strategies and comparison with the other smoothers…

Abstract

Purpose

The purpose of this paper is to propose multigrid methods in conjunction with explicit approximate inverses with various cycles strategies and comparison with the other smoothers.

Design/methodology/approach

The main motive for the derivation of the various multigrid schemes lies in the efficiency of the multigrid methods as well as the explicit approximate inverses. The combination of the various multigrid cycles with the explicit approximate inverses as smoothers in conjunction with the dynamic over/under relaxation (DOUR) algorithm results in efficient schemes for solving large sparse linear systems derived from the discretization of partial differential equations (PDE).

Findings

Application of the proposed multigrid methods on two-dimensional boundary value problems is discussed and numerical results are given concerning the convergence behavior and the convergence factors. The results are comparatively better than the V-cycle multigrid schemes presented in a recent report (Filelis-Papadopoulos and Gravvanis).

Research limitations/implications

The limitations of the proposed scheme lie in the fact that the explicit finite difference approximate inverse matrix used as smoother in the multigrid method is a preconditioner for specific sparsity pattern. Further research is carried out in order to derive a generic explicit approximate inverse for any type of sparsity pattern.

Originality/value

A novel smoother for the geometric multigrid method is proposed, based on optimized banded approximate inverse matrix preconditioner, the Richardson method in conjunction with the DOUR scheme, for solving large sparse linear systems derived from finite difference discretization of PDEs. Moreover, the applicability and convergence behavior of the proposed scheme is examined based on various cycles and comparative results are given against the damped Jacobi smoother.

Article
Publication date: 1 May 1995

L. Fourment and J.L. Chenot

The analysis of error estimation is addressed in the framework ofviscoplasticity problems, this is to say, of incompressible andnon‐linear materials. Firstly, Zienkiewicz—Zhu(Z2

Abstract

The analysis of error estimation is addressed in the framework of viscoplasticity problems, this is to say, of incompressible and non‐linear materials. Firstly, Zienkiewicz—Zhu (Z2) type error estimators are studied. They are based on the comparison between the finite element solution and a continuous solution which is computed by smoothing technique. From numerical examples, it is shown that the choice of a finite difference smoothing method (Orkisz’ method) improves the precision and the efficiency of this type of estimator. Then a Δ estimator is introduced. It makes it possible to take into account the fact that the smoothed solution does not verify the balance equations. On the other hand, it leads us to introduce estimators for the velocity error according to the L2 and Lnorms, since in metal forming this error is as important as the energy error. These estimators are applied to an industrial problem of extrusion, demonstrating all the potential of the adaptive remeshing method for forming processes.

Details

Engineering Computations, vol. 12 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 31000