Search results

1 – 10 of over 14000
Article
Publication date: 12 August 2014

Zhangjun Jin, Cijun Yu, Jiangxiong Li and Yinglin Ke

The purpose of this paper is to propose a robot-assisted assembly system (RAAS) for the installation of a variety of small components in the aircraft assembly system. The RAAS is…

Abstract

Purpose

The purpose of this paper is to propose a robot-assisted assembly system (RAAS) for the installation of a variety of small components in the aircraft assembly system. The RAAS is designed to improve the assembly accuracy and increase the productive efficiency.

Design/methodology/approach

The RAAS is a closed-loop feedback system, which is integrated with a laser tracking system and an industrial robot system. The laser tracking system is used to evaluate the deviations of the position and orientation of the small component and the industrial robot system is used to locate and re-align the small component according to the deviations.

Findings

The RAAS has exhibited considerable accuracy improvement and acceptable assembly efficiency in aircraft assembly project. With the RAAS, the maximum position deviation of the component is reduced to 0.069 mm and the maximum orientation deviation is reduced to 0.013°.

Social implications

The RAAS is applied successfully in one of the aircraft final assembly projects in southwest China.

Originality/value

By integrating the laser tracking system, the RAAS is constructed as a closed-loop feedback system of both the position and orientation of the component. With the RAAS, the installation a variety of small components can be dealt with by a single industrial robot.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 May 2015

Wichai Chattinnawat

The purpose of this paper is to apply the statistical tolerancing technique to analyze the dual responses of APFA arm height deviation with respect to next stage of disk assembly…

Abstract

Purpose

The purpose of this paper is to apply the statistical tolerancing technique to analyze the dual responses of APFA arm height deviation with respect to next stage of disk assembly process and simultaneously optimize and allocate the required tolerance of the responses onto its components at minimum cost of manufacturing and the quality loss.

Design/methodology/approach

The relationships between the dual responses of APFA heights and the geometric dimensions and tolerances of APFA components, and orientation of the assembled part with respect to disk assembly were first defined. The effects of the APFA orientation, and the component tolerances on the distributions and variations of the responses were derived and investigated in terms of resultant product/process performance, quality loss, and the cost of assembly. The tolerance cost-based objective function is then formulated as the combined manufacturing/assembly cost and the quality loss. Direct search method was used to find the best feasible tolerance solutions satisfying the required product performance at minimum cost.

Findings

The constructed relationship or transfer functions of the dual responses were probabilistic depending on the orientation of part with respect to the next assembly process. The Monte Carlo simulation is empirically suitable for the computation of the conditional distributions of the responses against the first-order linear approximation of component variances. The proposed solution of tolerance control plan increases the product performances, C pm , from 0.6 to be at least 1. The proposed tolerance allocation plans will reduce the amount of rework currently as high as 5 percent to at most 0.01 percent with minimally increased assembly cost.

Practical implications

This proposed methodology to design and allocate component tolerances is suitable and applicable to the APFA assembly process. The derived assembly functions of probabilistic type relating the responses to the process and component characteristics can represent the actual dynamic of assembled part better than a traditional single deterministic function developed under static concept. This presented methodology can be applied to other assembly cases where quality characteristic depends on the part dynamic.

Originality/value

This research simultaneously optimized the dual APFA height deviation responses with minimum cost of tolerance and quality loss using two different conditional distributions and transfer functions of the resultant deviations generated from dynamic of APFA with respect to disk.

Details

International Journal of Quality & Reliability Management, vol. 32 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 17 October 2017

Ashu Garg, Anirban Bhattacharya and Ajay Batish

The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and

342

Abstract

Purpose

The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and freeform surfaces of fused deposition modelling (FDM) specimens build at different part building orientations.

Design/methodology/approach

Parts with different primitive and curved surfaces are designed and modelled to build at three different part orientations along X orientation (vertical position resting on side face), Y orientation (horizontal position resting on base) and Z orientation (upright position). Later, the parts are post-processed by cold vapours of acetone. Geometric accuracy and surface roughness are measured both before and after the chemical treatment to investigate the change in geometric accuracy, surface roughness of FDM parts.

Findings

The results indicate that surface roughness is reduced immensely after cold vapour treatment with minimum variation in geometric accuracy of parts. Parts build vertically over its side face (X orientation) provides the overall better surface finish and geometric accuracy.

Originality/value

The present study provides an approach of post-built treatment for FDM parts and observes a significant improvement in surface finish of the components. The present approach of post-built treatment can be adopted to enhance the surface quality as well as to achieve desired geometric accuracy for different primitive, freeform/curved surfaces of FDM samples suitable for functional components as well as prototypes.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 January 2020

Yang Chuangui, Mi Liang, Liu Xingbao, Xia Yangqiu, Qiang Teng and Lin Han

This paper aims to propose a reasonable method to evaluate uncertainty of measurement of industrial robots’ orientation repeatability and solve the non-linear problem existing in…

Abstract

Purpose

This paper aims to propose a reasonable method to evaluate uncertainty of measurement of industrial robots’ orientation repeatability and solve the non-linear problem existing in its evaluation procedure.

Design/methodology/approach

Firstly, a measurement model of orientation repeatability, based on laser tracker, is established. Secondly, some factors, influencing the measurement result of orientation repeatability, are identified, and their probability distribution functions are modelled. Thirdly, based on Monte Carlo method, an uncertainty evaluation model and algorithm of measurement of industrial robot’s orientation repeatability are built. Finally, an industrial robot is taken as the research object to validate the rationality of proposed method.

Findings

Results show that the measurement model of orientation repeatability of industrial robot is non-linear, and the proposed method can reasonably and objectively estimate uncertainty of measurement of industrial robots’ orientation repeatability.

Originality/value

This paper, based on Monte Carlo method and experimental work, proposes an uncertainty evaluation method of measurement of industrial robots’ orientation repeatability which can solve the non-linear problem and provide a reasonable and objective evaluation. And the stochastic ellipsoid approach is firstly taken to model the repeatability of laser tracker. Additionally, this research is beneficial to decide whether the orientation repeatability of the industrial robot meets its requirements.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 July 2019

Ivana Cotabarren, Camila Andrea Palla, Caroline Taylor McCue and Anastasios John Hart

This paper aims to apply a robust methodology to establish relationships between user-configurable process parameters of commercial desktop stereolithography (SLA) printers and

290

Abstract

Purpose

This paper aims to apply a robust methodology to establish relationships between user-configurable process parameters of commercial desktop stereolithography (SLA) printers and dimensional accuracy of a custom-designed test artifact.

Design/methodology/approach

A detailed response surface methodology study, Box–Behnken incomplete factorial design of four factors with three levels, was carried out to evaluate process performance of desktop SLA printers. The selected factors were as follows: printing orientation angle in x-direction, printing orientation angle in y-direction, position on build platform in spatial x-coordinate, position on build tray in spatial y-coordinate and layer thickness. The proposed artifact was designed to include 12 feature groups including thin walls, holes, bosses, bridges and overhangs. Two responses were associated with the features: the dimensional deviation according to the designed value and the minimum feature size.

Findings

Layer thickness was the most significant factor in 70% of the analyzed responses. For example, measurement deviation was reduced about 90% when cylindrical holes were printed with the lowest layer thickness. Further, in many cases, dimensional deviation was minimized for features at the center of the platform, where the beam cures the resin in a straight line. However, at distant positions, accuracy could be improved by compensating for beam deviation by changing the object orientation angle.

Originality/value

The findings of this study can serve, both generally and specifically, for SLA designers and engineers who wish to optimize printing process variables and feature location to achieve high-dimensional accuracy and further understand the many coupled considerations among part design, build configuration and process performance.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 May 2019

Wilma Polini and Andrea Corrado

The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool…

Abstract

Purpose

The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool volumetric error. A kinematic model is presented that puts into relationship the locator error, the workpiece form deviations and the machine tool volumetric error.

Design/methodology/approach

The paper presents a general and systematic approach for geometric error modelling in drilling because of the geometric errors of locators positioning, of workpiece datum surface and of machine tool. The model can be implemented in four steps: (1) calculation of the deviation in the workpiece reference frame because of deviations of locator positions; (2) evaluation of the deviation in the workpiece reference frame owing to form deviations in the datum surfaces of the workpiece; (3) formulation of the volumetric error of the machine tool; and (4) combination of those three models.

Findings

The advantage of this approach lies in that it enables the source errors affecting the drilling accuracy to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for accuracy improvement through suitable measures, i.e. component tolerancing in design, machining and so on. Two typical drilling operations are taken as examples to illustrate the generality and effectiveness of this approach.

Research limitations/implications

Some source errors, such as the dynamic behaviour of the machine tool, are not taken into consideration, which will be modelled in practical applications.

Practical implications

The proposed kinematic model may be set by means of experimental tests, concerning the industrial specific application, to identify the values of the model parameters, such as standard deviation of the machine tool axes positioning and rotational errors. Then, it may be easily used to foresee the location deviation of a single or a pattern of holes.

Originality/value

The approaches present in the literature aim to model only one or at most two sources of machining error, such as fixturing, machine tool or workpiece datum. This paper goes beyond the state of the art because it considers the locator errors together with the form deviation on the datum surface into contact with the locators and, then, the volumetric error of the machine tool.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 September 2015

Lei Wang, Chuanzhi Sun, Jiubin Tan, Bo Zhao and Gu Wan

This paper aims to provide an assembly method to improve cylindrical components assembly quality. The proposed method not only could be applied to tolerance allocation, but also…

Abstract

Purpose

This paper aims to provide an assembly method to improve cylindrical components assembly quality. The proposed method not only could be applied to tolerance allocation, but also could guide the assembly of cylindrical components.

Design/methodology/approach

The paper claims to provide a stack-build assembly method using a connective assembly model to take the location and orientation tolerances of a rotor stage into account. Through the separate analysis of the location and orientation tolerances propagation process in the assembly, the quality of the final assembly of the rotationally symmetric cylindrical components assembly could be improved by properly selecting component orientations to minimize the eccentric deviation in the assembly.

Findings

The effectiveness of the proposed stack-build assembly technique in improving the tolerance propagation in the assembly of cylindrical components was verified through experiments run with a measuring machine. A real aero-engine rotor was assembly using the proposed method; compared to the direct-build assembly technique, which had the component orientations without consideration, the stack-build assembly technique could be used to reduce the eccentric deviation in cylindrical components assembly by nearly 50 per cent.

Originality/value

Different with the old methods, the new method defined the tolerances in detail, such as perpendicularity and angle of the lowest point, and could guide the assembly by the features of surfaces on different components. Through measuring the special tolerances of surfaces on the components, the best assembly angle for each component could be obtained.

Article
Publication date: 1 April 1989

Anghel N. Rugina

There is a double crisis in modern science and in particular inphysics and mechanics. Among others Einstein and Stephane Lupasco, inthe 1930s, warned about this crisis. The…

1985

Abstract

There is a double crisis in modern science and in particular in physics and mechanics. Among others Einstein and Stephane Lupasco, in the 1930s, warned about this crisis. The Quantum Theory cannot be reconciled with the Relativity Theory. Specifically there is a gap (cleavage) between micro – and macro‐physics and mechanics. Parallel or beneath there is also a second crisis derived from a discontinuity (again a cleavage) between classical and modern science, that is between two previous revolutions. A new research programme of a simultaneous equilibrium versus disequilibrium approach, initially applied in economics has now been extended to include natural sciences. It is the question of a new, more comprehensive methodology which is actually a sui generis synthesis between classical and modern heritage. The rigorous application of the new research programme leads to the organisation of an Orientation Table, that is, a methodological map of all possible combinations (systems). The Table shows, without any exaggeration, a few revolutionary results. For instance, with the help of the Table, modern science or the second revolution (Einstein, Bohr, Heisenberg) does not appear contradictory but rather complementary to classical science or the first revolution (Newton, Lavoisier). The Kuhnian thesis to the contrary is disproved and the second crisis is solved. With the help of the Universal Hypothesis of Duality (the basis of the Orientation Table), matter and energy, at the micro – and macro‐level, appear in a double form (the Principle of Duality): stable (equilibrium) particles and unstable (disequilibrium) waves. The strong interactions from modern physics are associated with the law of gravitation (attraction) or stable equilibrium which governs stable matter and energy. The weak interactions are associated with the law of disgravitation (dispersion or repulsion) including entropy or unstable equilibrium which governs unstable matter and energy. In this way the first crisis is also solved.

Details

International Journal of Social Economics, vol. 16 no. 4
Type: Research Article
ISSN: 0306-8293

Keywords

Article
Publication date: 10 February 2020

Dongping Zhao, Gangfeng Wang, Jizhuang Hui, Wei Hou and Richard David Evans

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and

Abstract

Purpose

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and quality of assembly. However, there is still a need for a systematic approach to be developed for APA of kinematic mechanisms. To achieve more accurate analysis of kinematic assembly, this paper aims to propose a precision analysis method based on equivalence of the deviation source.

Design/methodology/approach

A unified deviation vector representation model is adopted by considering dimension deviation, geometric deviation, joint clearance and assembly deformation. Then, vector loops and vector equations are constructed, according to joint type and deviation propagation path. A combined method, using deviation accumulation and sensitivity modeling, is applied to solve the kinematic APA of complex products.

Findings

When using the presented method, geometric form deviation, joint clearance and assembly deformation are considered selectively during tolerance modeling. In particular, the proposed virtual link model and its orientation angle are developed to determine joint deviation. Finally, vector loops and vector equations are modeled to express deviation accumulation.

Originality/value

The proposed method provides a new means for the APA of complex products, considering joint clearance and assembly deformation while improving the accuracy of APA, as much as possible.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 May 2000

Anghel N. Rugina

Attempts to prove, in this second chapter of the author’s monograph, that with a new research programme, it is possible to build a methodological bridge between economics and all…

4020

Abstract

Attempts to prove, in this second chapter of the author’s monograph, that with a new research programme, it is possible to build a methodological bridge between economics and all other natural sciences and the scientists should address this challenge. Reviews basic principles that govern nature, including Einstein’s findings along with such luminaries as Copernicus, Newton, Galileo and Jeans. Concludes that the future is safe, as a new generation of scientists is now emerging in the East and the West, and that the new methodology should provide enough space for new roads, ideas and interpretations, which may occur in the future. Closes by saying a new spirit should be initiated in economics and transplanted into natural sciences.

Details

International Journal of Social Economics, vol. 27 no. 5/6
Type: Research Article
ISSN: 0306-8293

Keywords

1 – 10 of over 14000