An assessment of the dimensional accuracy and geometry-resolution limit of desktop stereolithography using response surface methodology

Ivana Cotabarren (Planta Piloto de Ingenieria Quimica (UNS - CONICET), Bahia Blanca, Argentina and Departamento de Ingenieria Quimica (UNS), Bahia Blanca, Argentina)
Camila Andrea Palla (Planta Piloto de Ingenieria Quimica (UNS - CONICET), Bahia Blanca, Argentina and Departamento de Ingenieria Quimica (UNS), Bahia Blanca, Argentina)
Caroline Taylor McCue (Massachusetts Institute of Technology, Cambridge, Massachusetts, USA)
Anastasios John Hart (Massachusetts Institute of Technology, Cambridge, Massachusetts, USA)

Rapid Prototyping Journal

ISSN: 1355-2546

Publication date: 19 July 2019

Abstract

Purpose

This paper aims to apply a robust methodology to establish relationships between user-configurable process parameters of commercial desktop stereolithography (SLA) printers and dimensional accuracy of a custom-designed test artifact.

Design/methodology/approach

A detailed response surface methodology study, Box–Behnken incomplete factorial design of four factors with three levels, was carried out to evaluate process performance of desktop SLA printers. The selected factors were as follows: printing orientation angle in x-direction, printing orientation angle in y-direction, position on build platform in spatial x-coordinate, position on build tray in spatial y-coordinate and layer thickness. The proposed artifact was designed to include 12 feature groups including thin walls, holes, bosses, bridges and overhangs. Two responses were associated with the features: the dimensional deviation according to the designed value and the minimum feature size.

Findings

Layer thickness was the most significant factor in 70% of the analyzed responses. For example, measurement deviation was reduced about 90% when cylindrical holes were printed with the lowest layer thickness. Further, in many cases, dimensional deviation was minimized for features at the center of the platform, where the beam cures the resin in a straight line. However, at distant positions, accuracy could be improved by compensating for beam deviation by changing the object orientation angle.

Originality/value

The findings of this study can serve, both generally and specifically, for SLA designers and engineers who wish to optimize printing process variables and feature location to achieve high-dimensional accuracy and further understand the many coupled considerations among part design, build configuration and process performance.

Keywords

Citation

Cotabarren, I., Palla, C., McCue, C. and Hart, A. (2019), "An assessment of the dimensional accuracy and geometry-resolution limit of desktop stereolithography using response surface methodology", Rapid Prototyping Journal, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/RPJ-03-2019-0060

Download as .RIS

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.