Search results

1 – 10 of over 2000
Article
Publication date: 12 December 2023

Niveen Badra, Hosam Hegazy, Mohamed Mousa, Jiansong Zhang, Sharifah Akmam Syed Zakaria, Said Aboul Haggag and Ibrahim Abdul-Rashied

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel…

Abstract

Purpose

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel pedestrian bridges (SPBs). The cost estimation process uses two main parameters, but the main goal is to create a cost estimation model.

Design/methodology/approach

This study explores a flexible model design that uses computing capabilities for decision-making. Using cost optimization techniques, the model can select an optimal pedestrian bridge system based on multiple criteria that may change independently. This research focuses on four types of SPB systems prevalent in Egypt and worldwide. The study also suggests developing a computerized cost and weight optimization model that enables decision-makers to select the optimal system for SPBs in keeping up with the criteria established for that system.

Findings

In this paper, the authors developed an optimization model for cost estimates of SPBs. The model considers two main parameters: weight and cost. The main contribution of this study based on a parametric study is to propose an approach that enables structural engineers and designers to select the optimum system for SPBs.

Practical implications

The implications of this research from a practical perspective are that the study outlines a feasible approach to develop a computerized model that utilizes the capabilities of computing for quick cost optimization that enables decision-makers to select the optimal system for four common SPBs based on multiple criteria that may change independently and in concert with cost optimization during the preliminary design stage.

Social implications

The model can choose an optimal system for SPBs based on multiple criteria that may change independently and in concert with cost optimization. The resulting optimization model can forecast the optimum cost of the SPBs for different structural spans and road spans based on local unit costs of materials cost of steel structures, fabrication, erection and painting works.

Originality/value

The authors developed a computerized model that uses spreadsheet software's capabilities for cost optimization, enabling decision-makers to select the optimal system for SPBs meeting the criteria established for such a system. Based on structural characteristics and material unit costs, this study shows that using the optimization model for estimating the total direct cost of SPB systems, the project cost can be accurately predicted based on the conceptual design status, and positive prediction outcomes are achieved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 August 2024

Alaa Allam, Emad Elbeltagi, Mohamed Naguib Abouelsaad and Mohamed E. El Madawy

Formwork design and construction for reinforced concrete buildings take significant time, effort and money. Construction procedures are time-consuming for designers and costly for…

Abstract

Purpose

Formwork design and construction for reinforced concrete buildings take significant time, effort and money. Construction procedures are time-consuming for designers and costly for the contractor. Poor engineering decisions have led to several workplace accidents in the construction industry. This paper aims to present an integrated building information modeling – genetic algorithm (BIM-GA) model to automate formwork design, 3D visualization and optimization.

Design/methodology/approach

Data are precisely extracted from a 3D structural model and used to optimize formwork design based on available formwork components and prices. Optimization models are made using GA approach. A library of 3D formwork components was modeled and stored using Revit. The optimized design solution thereafter would be visualized automatically in Revit to readily acquire formwork quantities schedules and shop drawings.

Findings

A case study illustrating the proposed approach demonstrated that using BIM will reduce formwork design, quantification and drawing time by more than 50% of the traditional approach with safer design and accurate results due to process automation and optimize cost for the given data.

Originality/value

This research introduces an innovative integrated BIM and GA model for the optimization and automation of slab formwork design, which has significantly benefited the construction industry. The utilization of GA in the optimization process allows for the attainment of an optimal formwork design, ultimately leading to a reduction in construction cost and time.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 August 2021

Bin Zheng, Yi Cai and Kelun Tang

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the…

Abstract

Purpose

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine.

Design/methodology/approach

The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization.

Findings

After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased.

Originality/value

This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 February 2024

S. P. Sreenivas Padala and Prabhanjan M. Skanda

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early…

Abstract

Purpose

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early design stages. The objective is to optimize volumetric spaces (3D) instead of 2D spaces to enhance space utilization, thermal comfort, constructability and rental value of buildings

Design/methodology/approach

The integration of two fundamental concepts – BIM and MOO, forms the basis of proposed framework. In the early design phases of a project, BIM is used to generate precise building volume data. The non-sorting genetic algorithm-II, a MOO algorithm, is then used to optimize extracted volume data from 3D BIM models, considering four objectives: space utilization, thermal comfort, rental value and construction cost. The framework is implemented in context of a school of architecture building project.

Findings

The findings of case study demonstrate significant improvements resulting from MOO of building volumes. Space utilization increased by 30%, while thermal comfort improved by 20%, and construction costs were reduced by 10%. Furthermore, rental value of the case study building increased by 33%.

Practical implications

The proposed framework offers practical implications by enabling project teams to generate optimal building floor layouts during early design stages, thereby avoiding late costly changes during construction phase of project.

Originality/value

The integration of BIM and MOO in this study provides a unique approach to optimize building volumes considering multiple factors during early design stages of a project

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 July 2024

Emrah Cetin and Z.Q. Zhu

This study aims to obtain the minimum torque ripple at the maximum average torque for Flux-switching permanent magnet (FSPM) machines.

59

Abstract

Purpose

This study aims to obtain the minimum torque ripple at the maximum average torque for Flux-switching permanent magnet (FSPM) machines.

Design/methodology/approach

This paper is about torque performance optimization of the FSPM machines. To achieve that, finite element analysis and genetic algorithm (GA) are used. Five different designs are simulated, optimized and compared on their air gap flux density, back electromotive force, cogging torque, average torque, torque density and torque ripple.

Findings

After the thousands of iterations, its proved that all proposed shaping techniques have potential for reducing torque ripple and cogging torque, with slightly reduced average torque. The best design is the joint stator and rotor shaping, Design V, which results in the lowest torque ripple and cogging torque. The techniques should be applicable to FSPMs with other stator slot/rotor pole number combinations.

Originality/value

In this paper, rotor pole shaping by notching, chamfering and generic shaping, stator tooth shaping and joint shaping techniques are investigated for 12 s/10p FSPM machines. Rotor and stator flanks are optimized separately and jointly, by using finite element analysis and GA for optimization to achieve maximum average torque and minimum torque ripple. Five different design is implemented and compared, respectively.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

Article
Publication date: 26 June 2024

Hossam Wefki, Mona Salah, Emad Elbeltagi, Asser Elsheikh and Rana Khallaf

Given the growing interest in modern construction techniques and the emergence of innovative technologies, construction site layout planning research has progressively been…

Abstract

Purpose

Given the growing interest in modern construction techniques and the emergence of innovative technologies, construction site layout planning research has progressively been investigating approaches to adopt innovative concepts and incorporate renewed approaches to improve widespread efficiency. This research develops a decision-making tool that optimizes construction site layout plans. The developed model targets two main objectives: minimizing material transportation costs and maximizing safety by optimally placing facilities on construction sites.

Design/methodology/approach

A novel approach is devised based on the integration of Building Information Modeling and Generative Design (BIM-GD). This engine is used to optimize the multi-objective site layout problems to identify layout alternatives in the early project stages. Parametric modeling uses Dynamo to construct the model and explore constraints initially. Finally, the GD environment is utilized to create different design alternatives, and then the decision-making procedure selects the most appropriate design alternative. Additionally, a case study is applied to validate the effectiveness of the developed model.

Findings

The results indicate the effectiveness of the proposed GD tool and its potential for more complex applications. The GD engine examined optimal layout plans, balancing different objectives and adhering to appointed geometric constraints. A case study was conducted to assess the model's effectiveness and showcase its suitability. Construction Site Layout Planning (CSLP) is an essential step in design that can influence considerable aspects, such as material transportation expenses and different safety standards on the site. Employing visual programming for parametric modeling within Dynamo-Revit creates an expedient and user-friendly platform for planning engineers who may require more programming expertise to create and program algorithmic models visually. Utilizing GD in CSLP has proven to be a powerful tool with consequential prospects for improving applications and executing more models.

Practical implications

The findings from this framework are intended to help construction practitioners select the most appropriate site layout during early project stages while incorporating different safety criteria inside construction sites to alleviate actual safety risks.

Originality/value

A new approach is proposed that utilizes an integrated BIM-GD engine to optimize multi-objective site layout problems. This approach targets two main objectives: minimizing material transportation costs and maximizing safety by optimally placing facilities in construction sites.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 August 2024

Yunxiang Li, Yunfei Ai, Jinzhou Zou, Liangyu Liu, Chengjian Liu, Siheng Fu, Dehua Zou and Wang Wei

By analyzing the shortcomings of existing insulator robots, a novel ultra high voltage (UHV) insulator climbing robot, which could transfer between adjacent insulator strings, is…

Abstract

Purpose

By analyzing the shortcomings of existing insulator robots, a novel ultra high voltage (UHV) insulator climbing robot, which could transfer between adjacent insulator strings, is proposed for operation on 800KV multiple-string insulators. An extended inchworm-like configuration was chosen and a stable gripping claw suitable for the insulator string was designed to enable the robot to multiple-string insulators. Then a set of nonheuristic structural parameters that can influence energy consumption was chosen to formulate a nonlinear optimization problem based on the configuration, which improved the energy efficiency of the robot during progressing along a string of insulator.

Design/methodology/approach

The purpose of this paper is to design an insulator climbing robot for operation on UHV multiple-string insulators, which could transfer between adjacent insulator strings and progressed along a string of insulator with high energy efficiency.

Findings

A physical prototype was constructed that can operate at the speed of six pieces per minute (approximately 1.44 meters per minute) on a single string and complete transference between adjacent strings in 45 s. The energy consumption of joints during progressed along a string of insulator had been reduced by 38.8% with the optimized parameters, demonstrating the consistency between the experimental and simulation results.

Originality/value

An insulator climbing robot for operation on UHV multiple-string insulators has been developed with energy consumption optimization design. The robot can transfer between adjacent insulator strings and progressed along a string of insulator with high energy efficiency. The CLIBOT could be expanded to detect or clean the insulators with similar specification.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2024

Ming Zhang, Hantao Zhang, WeiYe Tao, Yan Yang and Yingjun Sang

This study aims to solve the problem that both the speed and the required driving power of electric vehicles (EVs) will change during the dynamic wireless charging (DWC) process…

Abstract

Purpose

This study aims to solve the problem that both the speed and the required driving power of electric vehicles (EVs) will change during the dynamic wireless charging (DWC) process, making it difficult to charge EVs with a constant power considering the overall efficiency of DWC system, the numbers of EVs and the power supply capacity. Therefore, this paper proposes the power control and efficiency optimization strategies for multiple EVs.

Design/methodology/approach

The wireless power charging system for multiple loads with a structure of double-sided LCC compensation topology is established. The expressions of optimal transmission efficiency and optimal equivalent impedance are derived. Taking the Tesla Model 3 as an example, a method to determine the number of EVs allowed by one transmitter coil and the overall charging power is proposed considering EV speed, power supply capacity, safe braking distance and overall efficiency. Then, the power control strategy, which can adapt to the changes of EV speed and the efficiency optimization strategy under different numbers of EVs are proposed.

Findings

In this paper, a method to determine the numbers of EVs allowed by one transmitter coil and the overall charging power is proposed considering EVs speed, power supply capacity, safe braking distance and overall efficiency. The accuracy of the charging power is good enough and the overall efficiency reaches a maximum of 91.79% when the load resistance changes from 5Ω to 20Ω.

Originality/value

In this paper, the power control and efficiency optimization strategy of DWC system for multiple EVs are proposed. Specifically, a method of designing the number of EVs and charging power allowed by one transmitter coil considering the factors of EV speed, power supply capacity, safe braking distance and overall efficiency is designed. The overall efficiency of the experiment reaches a maximum of 91.79% after adopting the optimization strategy.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 September 2024

Jaya Choudhary, Mangey Ram and Ashok Singh Bhandari

This research introduces an innovation strategy aimed at bolstering the reliability of a renewable energy resource, which is hybrid energy systems, through the application of a…

Abstract

Purpose

This research introduces an innovation strategy aimed at bolstering the reliability of a renewable energy resource, which is hybrid energy systems, through the application of a metaheuristic algorithm. The growing need for sustainable energy solutions underscores the importance of integrating various energy sources effectively. Concentrating on the intermittent characteristics of renewable sources, this study seeks to create a highly reliable hybrid energy system by combining photovoltaic (PV) and wind power.

Design/methodology/approach

To obtain efficient renewable energy resources, system designers aim to enhance the system’s reliability. Generally, for this purpose, the reliability redundancy allocation problem (RRAP) method is utilized. The authors have also introduced a new methodology, named Reliability Redundancy Allocation Problem with Component Mixing (RRAP-CM), for optimizing systems’ reliability. This method incorporates heterogeneous components to create a nonlinear mixed-integer mathematical model, classified as NP-hard problems. We employ specially crafted metaheuristic algorithms as optimization strategies to address these challenges and boost the overall system performance.

Findings

The study introduces six newly designed metaheuristic algorithms. Solve the optimization problem. When comparing results between the traditional RRAP method and the innovative RRAP-CM method, enhanced reliability is achieved through the blending of diverse components. The use of metaheuristic algorithms proves advantageous in identifying optimal configurations, ensuring resource efficiency and maximizing energy output in a hybrid energy system.

Research limitations/implications

The study’s findings have significant social implications because they contribute to the renewable energy field. The proposed methodologies offer a flexible and reliable mechanism for enhancing the efficiency of hybrid energy systems. By addressing the intermittent nature of renewable sources, this research promotes the design of highly reliable sustainable energy solutions, potentially influencing global efforts towards a more environmentally friendly and reliable energy landscape.

Practical implications

The research provides practical insights by delivering a comprehensive analysis of a hybrid energy system incorporating both PV and wind components. Also, the use of metaheuristic algorithms aids in identifying optimal configurations, promoting resource efficiency and maximizing reliability. These practical insights contribute to advancing sustainable energy solutions and designing efficient, reliable hybrid energy systems.

Originality/value

This work is original as it combines the RRAP-CM methodology with six new robust metaheuristics, involving the integration of diverse components to enhance system reliability. The formulation of a nonlinear mixed-integer mathematical model adds complexity, categorizing it as an NP-hard problem. We have developed six new metaheuristic algorithms. Designed specifically for optimization in hybrid energy systems, this further highlights the uniqueness of this approach to research.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of over 2000