Search results

1 – 10 of over 15000
Article
Publication date: 13 May 2022

Mustafa Onur Savaşkan and Ozan Önder Özener

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made…

Abstract

Purpose

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made and highly structured H-BIM approaches can effectively be implemented in preservation applications for historic vernacular buildings in the rural architecture context.

Design/methodology/approach

Using inexpensive digital photogrammetry techniques tightly combined with an object-oriented BIM ontology, parametric meta-modeling and object/system propagation methods, the study employed a holistic H-BIM approach for capturing the materiality, building object behaviors and indigenous construction principles of a characteristic vernacular house that were synthesized in a parametric H-BIM model. The followed stages, steps and connected methods were systematized and articulated in a prototypical H-BIM implementation framework.

Findings

The study findings suggested that the developed parametric H-BIM approach can return effective results with the combined use of low-cost and practical digital photogrammetry with BIM methods. The flexibility and adaptability of the parametric H-BIM implementation framework facilitated the synthesis of a comprehensive H-BIM model and allowed an in-depth evaluation of local architectural heritage with its physical, spatial and environmental characteristics. The proposed H-BIM approach also provided significant documentation and system-specific assessment benefits for preserving the vernacular examples which are prone to extinction especially due to structural and systemic deterioration.

Originality/value

The study proposes a feasible, practical and replicable H-BIM implementation methodology for vernacular preservation applications. The knowledge-embedded H-BIM approach, flows and techniques presented in this study provide a holistic and systematic H-BIM framework – with the integrated use of digital photogrammetry and parametric meta-modeling methods – that has the potential for the democratization of H-BIM applications in education and practice.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 March 2024

Wenqian Feng, Xinrong Li, Jiankun Wang, Jiaqi Wen and Hansen Li

This paper reviews the pros and cons of different parametric modeling methods, which can provide a theoretical reference for parametric reconstruction of 3D human body models for…

Abstract

Purpose

This paper reviews the pros and cons of different parametric modeling methods, which can provide a theoretical reference for parametric reconstruction of 3D human body models for virtual fitting.

Design/methodology/approach

In this study, we briefly analyze the mainstream datasets of models of the human body used in the area to provide a foundation for parametric methods of such reconstruction. We then analyze and compare parametric methods of reconstruction based on their use of the following forms of input data: point cloud data, image contours, sizes of features and points representing the joints. Finally, we summarize the advantages and problems of each method as well as the current challenges to the use of parametric modeling in virtual fitting and the opportunities provided by it.

Findings

Considering the aspects of integrity and accurate of representations of the shape and posture of the body, and the efficiency of the calculation of the requisite parameters, the reconstruction method of human body by integrating orthogonal image contour morphological features, multifeature size constraints and joint point positioning can better represent human body shape, posture and personalized feature size and has higher research value.

Originality/value

This article obtains a research thinking for reconstructing a 3D model for virtual fitting that is based on three kinds of data, which is helpful for establishing personalized and high-precision human body models.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Abstract

Details

Handbook of Transport Modelling
Type: Book
ISBN: 978-0-08-045376-7

Open Access
Article
Publication date: 7 December 2023

Elena Vazquez

Algorithmic and computational thinking are necessary skills for designers in an increasingly digital world. Parametric design, a method to construct designs based on algorithmic…

Abstract

Purpose

Algorithmic and computational thinking are necessary skills for designers in an increasingly digital world. Parametric design, a method to construct designs based on algorithmic logic and rules, has become widely used in architecture practice and incorporated in the curricula of architecture schools. However, there are few studies proposing strategies for teaching parametric design into architecture students, tackling software literacy while promoting the development of algorithmic thinking.

Design/methodology/approach

A descriptive study and a prescriptive study are conducted. The descriptive study reviews the literature on parametric design education. The prescriptive study is centered on proposing the incomplete recipe as instructional material and a new approach to teaching parametric design.

Findings

The literature on parametric design education has mostly focused on curricular discussions, descriptions of case studies or studio-long approaches; day-to-day instructional methods, however, are rarely discussed. A pedagogical strategy to teach parametric design is introduced: the incomplete recipe. The instructional method proposed provides students with incomplete recipes for parametric scripts that are increasingly pared down as the students become expert users.

Originality/value

The article contributes to the existing literature by proposing the incomplete recipe as a strategy for teaching parametric design. The recipe as a pedagogical tool provides a means for both software skill acquisition and the development of algorithmic thinking.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 3 August 2015

Zhijia Dong, Gaoming Jiang, Zhiming Wu and Honglian Cong

The purpose of this paper is to develop a parametric design method for 3D human bodies to be used in computer-aided style design and the 3D presentations of warp-knitted seamless…

1710

Abstract

Purpose

The purpose of this paper is to develop a parametric design method for 3D human bodies to be used in computer-aided style design and the 3D presentations of warp-knitted seamless garment.

Design/methodology/approach

In order to obtain 3D human bodies of different sizes, all of which have been based on anthropometric measurement, a human body model template was constructed by importing vertices and facets information in an OBJ model file which had been exported from POSER. A parametric model was then established by extracting feature information from the template model using a method combining 3D geometry analysis and human semantic analysis; this information included the template model’s feature points and measurements. By applying a mesh deformation method, based on the radius basis function interpolation, to the template model, different size human bodies were then generated according to user-specific anthropometric measurements.

Findings

The test results validated the method presented in this paper as a useful and effective approach to generate diffident size human models from a template model by modifying anthropometric measurements, which establishes a foundation for the style design and 3D presentations of warp-knitted seamless garments.

Originality/value

This paper provides parametric design methods for generating bodies of varying size according to different anthropometric measurements in the 3D domain, which is the basis of style design and 3D presentation for warp-knitted seamless garments.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 February 2021

Chen Bao, Yongwei Miao, Bingfei Gu, Kaixuan Liu and Zhen Liu

The purpose of this paper is to propose an interactive 2D–3D garment parametric pattern-making and linkage editing scheme that integrates clothing design, simulation and…

Abstract

Purpose

The purpose of this paper is to propose an interactive 2D–3D garment parametric pattern-making and linkage editing scheme that integrates clothing design, simulation and interaction to design 3D garments and 2D patterns. The proposed scheme has the potential to satisfy the individual needs of fashion industry, such as precise fit evaluation of the garment, interactive style editing with ease allowance and constrained contour lines in fashion design.

Design/methodology/approach

The authors first construct a parametric pattern-making model for flat pattern design corresponding to the body dimensions. Then, the designing 2D patterns are stitched on a virtual 3D mannequin by performing a virtual try-on. If the customer is unsatisfied after the virtual try-on, the adjustable parameters (appearance parameters and fit parameters) can be adjusted using the 2D–3D linkage editing with hierarchical constrained contour lines, and the fit evaluation tool interactively provides the feedback.

Findings

The authors observed that the usability and efficiency of the existing garment pattern-making method simplifies the garment pattern-making process. The authors utilize an interactive garment parametric flat pattern-making model to generate an individualized garment flat pattern that effectively adjust and realize the local editing of the garment pattern-making. The 2D–3D linkage editing is then employed, which alters the size and shape of garment pattern for a precise human model fit of the 3D garment using hierarchical constrained contour lines. Various instances have validated the effectiveness of the proposed scheme, which can increase the reusability of the existing garment styles and improve the efficiency of fashion design.

Research limitations/implications

First, the authors do not consider the garment pattern-making design of sophisticated styles. Second, the authors do not directly consider complex garment shapes such as wrinkles, folds, multi-layer models and fabric physical properties.

Originality/value

The authors propose a pattern adjustment scheme that uses the 3D virtual try-on technology to avoid repetitions of reality-based fit tests and garment sample making in the designing process of clothing products. The proposed scheme provides interactive selections of garment patterns and sizes and renders modification tools for 3D garment designing and 2D garment pattern-making. The authors present the 2D–3D interactive linkage editing scheme for a custom-fit garment pattern based on the hierarchical constraint contour lines. The spatial relationship among the human body, pattern pieces and 3D garment model is adequately expressed, and the final design result of the garment pattern is obtained by constraint solving. Meanwhile, the tightness tension of different parts of the 3D garment is analyzed, and the fit and comfort of the garment are quantitatively evaluated.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 April 2019

Zaki Mallasi

Advances in digital design tools enable exploration and generation of dynamic building facades. However, some processes are formally prescribed and manually driven to only…

Abstract

Purpose

Advances in digital design tools enable exploration and generation of dynamic building facades. However, some processes are formally prescribed and manually driven to only visualize the design concepts. The purpose of this paper is to present a proactive framework for integrating parametric design thinking, paying particular attention to building facade patterning.

Design/methodology/approach

This work developed the PatternGen© add-on in Autodesk® Revit which utilizes an analytical image data (AID) overlay approach as a data source to dynamically pattern the building facade. The add-on was used to manipulate the placement rules of curtain panels on facade surface geometry. As means of validating this research model, a real-life design project has been chosen to illustrate the practical application of this approach. Feedback and observations from a short end-user questionnaire assessed qualitatively the facade patterning and panelization approach.

Findings

The proposed merge (or overlay) of AID images can be used as a parametric thinking method rather than just theory to generate and articulate dynamic facade design. The facade panelization responds to an AID that resembles design-performance data (e.g. solar exposure, interior privacy importance and aesthetics).

Originality/value

This work identifies a form of parametric thinking defined as the expression of geometrical relationships and its configuration dependent on the AID pixel Red Green Blue color source values. In this type of thinking, it explores the impact of the digital process and parametric thinking utility when driven by an AID overlay. The framework highlighted the practical application of AID pixel approach within a digital process to benefit both designers and computational tools developer on emerging design innovations.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 July 2021

Peter A. Jones, Vincent Reitano, J.S. Butler and Robert Greer

Public management researchers commonly model dichotomous dependent variables with parametric methods despite their relatively strong assumptions about the data generating process…

Abstract

Purpose

Public management researchers commonly model dichotomous dependent variables with parametric methods despite their relatively strong assumptions about the data generating process. Without testing for those assumptions and consideration of semiparametric alternatives, such as maximum score, estimates might be biased, or predictions might not be as accurate as possible.

Design/methodology/approach

To guide researchers, this paper provides an evaluative framework for comparing parametric estimators with semiparametric and nonparametric estimators for dichotomous dependent variables. To illustrate the framework, the article estimates the factors associated with the passage of school district bond referenda in all Texas school districts from 1998 to 2015.

Findings

Estimates show that the correct prediction of a bond passing increases from 77.2 to 78%, with maximum score estimation relative to a commonly used parametric alternative. While this is a small increase, it is meaningful in comparison to the random prediction base model.

Originality/value

Future research modeling any dichotomous dependent variable can use the framework to identify the most appropriate estimator and relevant statistical programs.

Details

International Journal of Public Sector Management, vol. 34 no. 6
Type: Research Article
ISSN: 0951-3558

Keywords

Article
Publication date: 14 July 2023

Bowen Zheng, Mudasir Hussain, Yang Yang, Albert P.C. Chan and Hung-Lin Chi

In the last decades, various building information modeling–life cycle assessment (BIM-LCA) integration approaches have been developed to assess the environmental impact of the…

Abstract

Purpose

In the last decades, various building information modeling–life cycle assessment (BIM-LCA) integration approaches have been developed to assess the environmental impact of the built asset. However, there is a lack of consensus on the optimal BIM-LCA integration approach that provides the most accurate and efficient assessment outcomes. To compare and determine their accuracy and efficiency, this study aimed to investigate four typical BIM-LCA integration solutions, namely, conventional, parametric modeling, plug-in and industry foundation classes (IFC)-based integration.

Design/methodology/approach

The four integration approaches were developed and applied using the same building project. A quantitative technique for evaluating the accuracy and efficiency of BIM-LCA integration solutions was used. Four indicators for assessing the performance of BIM-LCA integration were (1) validity of LCA results, (2) accuracy of bill-of-quantity (BOQ) extraction, (3) time for developing life cycle inventories (i.e. developing time) and (4) time for calculating LCA results (i.e. calculation time).

Findings

The results show that the plug-in-based approach outperforms others in developing and calculation time, while the conventional one could derive the most accuracy in BOQ extraction and result validity. The parametric modeling approach outperforms the IFC-based method regarding BOQ extraction, developing time and calculation time. Despite this, the IFC-based approach produces LCA outcomes with approximately 1% error, proving its validity.

Originality/value

This paper forms one of the first studies that employ a quantitative and objective method to determine the performance of four typical BIM-LCA integration solutions and reveal the trade-offs between the accuracy and efficiency of the integration approaches. The findings provide practical references for LCA practitioners to select appropriate BIM-LCA integration approaches for evaluating the environmental impact of the built asset during the design phase.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 16 December 2009

Zongwu Cai and Yongmiao Hong

This paper gives a selective review on some recent developments of nonparametric methods in both continuous and discrete time finance, particularly in the areas of nonparametric…

Abstract

This paper gives a selective review on some recent developments of nonparametric methods in both continuous and discrete time finance, particularly in the areas of nonparametric estimation and testing of diffusion processes, nonparametric testing of parametric diffusion models, nonparametric pricing of derivatives, nonparametric estimation and hypothesis testing for nonlinear pricing kernel, and nonparametric predictability of asset returns. For each financial context, the paper discusses the suitable statistical concepts, models, and modeling procedures, as well as some of their applications to financial data. Their relative strengths and weaknesses are discussed. Much theoretical and empirical research is needed in this area, and more importantly, the paper points to several aspects that deserve further investigation.

Details

Nonparametric Econometric Methods
Type: Book
ISBN: 978-1-84950-624-3

1 – 10 of over 15000