Search results

1 – 10 of 19
Open Access
Article
Publication date: 10 August 2022

Jie Ma, Zhiyuan Hao and Mo Hu

The density peak clustering algorithm (DP) is proposed to identify cluster centers by two parameters, i.e. ρ value (local density) and δ value (the distance between a point and…

Abstract

Purpose

The density peak clustering algorithm (DP) is proposed to identify cluster centers by two parameters, i.e. ρ value (local density) and δ value (the distance between a point and another point with a higher ρ value). According to the center-identifying principle of the DP, the potential cluster centers should have a higher ρ value and a higher δ value than other points. However, this principle may limit the DP from identifying some categories with multi-centers or the centers in lower-density regions. In addition, the improper assignment strategy of the DP could cause a wrong assignment result for the non-center points. This paper aims to address the aforementioned issues and improve the clustering performance of the DP.

Design/methodology/approach

First, to identify as many potential cluster centers as possible, the authors construct a point-domain by introducing the pinhole imaging strategy to extend the searching range of the potential cluster centers. Second, they design different novel calculation methods for calculating the domain distance, point-domain density and domain similarity. Third, they adopt domain similarity to achieve the domain merging process and optimize the final clustering results.

Findings

The experimental results on analyzing 12 synthetic data sets and 12 real-world data sets show that two-stage density peak clustering based on multi-strategy optimization (TMsDP) outperforms the DP and other state-of-the-art algorithms.

Originality/value

The authors propose a novel DP-based clustering method, i.e. TMsDP, and transform the relationship between points into that between domains to ultimately further optimize the clustering performance of the DP.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 26 October 2020

Mohammed S. Al-kahtani, Lutful Karim and Nargis Khan

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an…

Abstract

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an effective incidence response and disaster recovery framework. Existing sensor routing protocols are mostly not effective in such disaster recovery applications as the networks are affected (destroyed or overused) in disasters such as earthquake, flood, Tsunami and wildfire. These protocols require a large number of message transmissions to reestablish the clusters and communications that is not energy efficient and result in packet loss. This paper introduces ODCR - an energy efficient and reliable opportunistic density clustered-based routing protocol for such emergency sensor applications. We perform simulation to measure the performance of ODCR protocol in terms of network energy consumptions, throughput and packet loss ratio. Simulation results demonstrate that the ODCR protocol is much better than the existing TEEN, LEACH and LORA protocols in term of these performance metrics.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 27 February 2023

Dilawar Ali, Kenzo Milleville, Steven Verstockt, Nico Van de Weghe, Sally Chambers and Julie M. Birkholz

Historical newspaper collections provide a wealth of information about the past. Although the digitization of these collections significantly improves their accessibility, a large…

Abstract

Purpose

Historical newspaper collections provide a wealth of information about the past. Although the digitization of these collections significantly improves their accessibility, a large portion of digitized historical newspaper collections, such as those of KBR, the Royal Library of Belgium, are not yet searchable at article-level. However, recent developments in AI-based research methods, such as document layout analysis, have the potential for further enriching the metadata to improve the searchability of these historical newspaper collections. This paper aims to discuss the aforementioned issue.

Design/methodology/approach

In this paper, the authors explore how existing computer vision and machine learning approaches can be used to improve access to digitized historical newspapers. To do this, the authors propose a workflow, using computer vision and machine learning approaches to (1) provide article-level access to digitized historical newspaper collections using document layout analysis, (2) extract specific types of articles (e.g. feuilletons – literary supplements from Le Peuple from 1938), (3) conduct image similarity analysis using (un)supervised classification methods and (4) perform named entity recognition (NER) to link the extracted information to open data.

Findings

The results show that the proposed workflow improves the accessibility and searchability of digitized historical newspapers, and also contributes to the building of corpora for digital humanities research. The AI-based methods enable automatic extraction of feuilletons, clustering of similar images and dynamic linking of related articles.

Originality/value

The proposed workflow enables automatic extraction of articles, including detection of a specific type of article, such as a feuilleton or literary supplement. This is particularly valuable for humanities researchers as it improves the searchability of these collections and enables corpora to be built around specific themes. Article-level access to, and improved searchability of, KBR's digitized newspapers are demonstrated through the online tool (https://tw06v072.ugent.be/kbr/).

Article
Publication date: 7 February 2024

Madhavi Prashant Patil and Ombretta Romice

In urban studies, understanding how individuals perceive density is a complex challenge due to the subjective nature of this perception, which is influenced by sociocultural…

36

Abstract

Purpose

In urban studies, understanding how individuals perceive density is a complex challenge due to the subjective nature of this perception, which is influenced by sociocultural, personal and environmental factors. This study addresses these complexities by proposing a systematic framework for comprehending how people perceive density within urban contexts.

Design/methodology/approach

The methodology for developing the framework involved a systematic review of existing literature on the perception of density and related concepts, followed by integrating insights from empirical investigations. The framework designed through this process overcomes the limitations identified in previous research and provides a comprehensive guide for studying perceived density in urban environments.

Findings

The successful application of the framework on case studies in Glasgow and international settings enabled the identification of 20 critical spatial factors (buildings, public realm and urban massing) influencing density perception. The research provided insights into the subjective nature of density perception and the impact that spatial characters of urban form play, demonstrating the framework's effectiveness in understanding the impact of urban form, which is the realm of design and planning professions, on individual experiences.

Originality/value

The paper's originality lies in its comprehensive synthesis of the existing knowledge on the perception of density, the development of a user-responsive framework adaptable to future research and its application in case studies of different natures to identify recurrent links between urban form and user-specific constructs.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Open Access
Article
Publication date: 26 April 2024

Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…

Abstract

Purpose

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.

Design/methodology/approach

The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.

Findings

The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.

Originality/value

The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.

Details

Smart and Resilient Transportation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 22 February 2024

Yumeng Feng, Weisong Mu, Yue Li, Tianqi Liu and Jianying Feng

For a better understanding of the preferences and differences of young consumers in emerging wine markets, this study aims to propose a clustering method to segment the super-new…

Abstract

Purpose

For a better understanding of the preferences and differences of young consumers in emerging wine markets, this study aims to propose a clustering method to segment the super-new generation wine consumers based on their sensitivity to wine brand, origin and price and then conduct user profiles for segmented consumer groups from the perspectives of demographic attributes, eating habits and wine sensory attribute preferences.

Design/methodology/approach

We first proposed a consumer clustering perspective based on their sensitivity to wine brand, origin and price and then conducted an adaptive density peak and label propagation layer-by-layer (ADPLP) clustering algorithm to segment consumers, which improved the issues of wrong centers' selection and inaccurate classification of remaining sample points for traditional DPC (DPeak clustering algorithm). Then, we built a consumer profile system from the perspectives of demographic attributes, eating habits and wine sensory attribute preferences for segmented consumer groups.

Findings

In this study, 10 typical public datasets and 6 basic test algorithms are used to evaluate the proposed method, and the results showed that the ADPLP algorithm was optimal or suboptimal on 10 datasets with accuracy above 0.78. The average improvement in accuracy over the base DPC algorithm is 0.184. As an outcome of the wine consumer profiles, sensitive consumers prefer wines with medium prices of 100–400 CNY and more personalized brands and origins, while casual consumers are fond of popular brands, popular origins and low prices within 50 CNY. The wine sensory attributes preferred by super-new generation consumers are red, semi-dry, semi-sweet, still, fresh tasting, fruity, floral and low acid.

Practical implications

Young Chinese consumers are the main driver of wine consumption in the future. This paper provides a tool for decision-makers and marketers to identify the preferences of young consumers quickly which is meaningful and helpful for wine marketing.

Originality/value

In this study, the ADPLP algorithm was introduced for the first time. Subsequently, the user profile label system was constructed for segmented consumers to highlight their characteristics and demand partiality from three aspects: demographic characteristics, consumers' eating habits and consumers' preferences for wine attributes. Moreover, the ADPLP algorithm can be considered for user profiles on other alcoholic products.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 June 2023

Simon Bagy, Michel Libsig, Bastien Martinez and Baptiste Masse

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Abstract

Purpose

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Design/methodology/approach

The performance of a gliding projectile concept is assessed using an aeroballistic workflow, comprising aerodynamic characterization and flight trajectory computation. First, a single-objective optimization is run with genetic algorithms to find the maximal attainable range for this type of projectile. Then, a multi-objective formulation of the problem is proposed to consider the compromise between range and time of flight. Finally, the aerodynamic model used for the gliding ammunition is evaluated, in comparison with direct computational fluid dynamics (CFD) computations.

Findings

Applying single-objective range maximization results in a great improvement of the reachable distance of the projectile, at the expense of the flight duration. Therefore, a multi-objective optimization is implemented in a second time, to search sets of parameters resulting in an optimal compromise between fire range and flight time. The resulting Pareto front can be directly interpreted and has the advantage of being useful for tactical decisions.

Research limitations/implications

The main limitation of the work concerns the aerodynamic model of the gliding ammunition, which was initially proposed as an alternative to reduce significantly the computational cost of aerodynamic characterization and enable optimizations. When compared with direct CFD computations, this method appears to induce an overestimation of the range. This suggests future evolution to improve the accuracy of this approach.

Originality/value

To the best of the authors’ knowledge, this paper presents an original ammunition concept for howitzers, aiming at extending the range of fire by using lifting surfaces and guidance. In addition, optimization techniques are used to improve the range of such projectile configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Ning Chen, Zhenyu Zhang and An Chen

Consequence prediction is an emerging topic in safety management concerning the severity outcome of accidents. In practical applications, it is usually implemented through…

Abstract

Purpose

Consequence prediction is an emerging topic in safety management concerning the severity outcome of accidents. In practical applications, it is usually implemented through supervised learning methods; however, the evaluation of classification results remains a challenge. The previous studies mostly adopted simplex evaluation based on empirical and quantitative assessment strategies. This paper aims to shed new light on the comprehensive evaluation and comparison of diverse classification methods through visualization, clustering and ranking techniques.

Design/methodology/approach

An empirical study is conducted using 9 state-of-the-art classification methods on a real-world data set of 653 construction accidents in China for predicting the consequence with respect to 39 carefully featured factors and accident type. The proposed comprehensive evaluation enriches the interpretation of classification results from different perspectives. Furthermore, the critical factors leading to severe construction accidents are identified by analyzing the coefficients of a logistic regression model.

Findings

This paper identifies the critical factors that significantly influence the consequence of construction accidents, which include accident type (particularly collapse), improper accident reporting and handling (E21), inadequate supervision engineers (O41), no special safety department (O11), delayed or low-quality drawings (T11), unqualified contractor (C21), schedule pressure (C11), multi-level subcontracting (C22), lacking safety examination (S22), improper operation of mechanical equipment (R11) and improper construction procedure arrangement (T21). The prediction models and findings of critical factors help make safety intervention measures in a targeted way and enhance the experience of safety professionals in the construction industry.

Research limitations/implications

The empirical study using some well-known classification methods for forecasting the consequences of construction accidents provides some evidence for the comprehensive evaluation of multiple classifiers. These techniques can be used jointly with other evaluation approaches for a comprehensive understanding of the classification algorithms. Despite the limitation of specific methods used in the study, the presented methodology can be configured with other classification methods and performance metrics and even applied to other decision-making problems such as clustering.

Originality/value

This study sheds new light on the comprehensive comparison and evaluation of classification results through visualization, clustering and ranking techniques using an empirical study of consequence prediction of construction accidents. The relevance of construction accident type is discussed with the severity of accidents. The critical factors influencing the accident consequence are identified for the sake of taking prevention measures for risk reduction. The proposed method can be applied to other decision-making tasks where the evaluation is involved as an important component.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 May 2024

Qing Huang, Xiaoling Li and Dianwen Wang

Previous studies on social influence and virtual product adoption have mainly taken users’ purchase behavior as a dichotomous variable (i.e. purchasing or not). Given the…

Abstract

Purpose

Previous studies on social influence and virtual product adoption have mainly taken users’ purchase behavior as a dichotomous variable (i.e. purchasing or not). Given the prevalence of competing versions (basic vs upgraded) of a virtual product in online communities, this paper investigated the differences in the effect of social influence on users’ adoption of basic and upgraded choices of a virtual product. It also examined how the effect varies with users’ social status and user-level network density.

Design/methodology/approach

A natural experiment was conducted in an online game community. Two competing versions (basic vs upgraded) of a virtual product were provided for in-game purchase while a random set of users selected from 897,765 players received the notification of their friends’ adoption information. A competing-risk model was used to test the hypotheses.

Findings

Social influence exerts a stronger positive effect on users’ adoption of the upgraded virtual product than of the basic virtual product. Middle-status users have the greatest (least) susceptibility to social influence in adopting the upgraded (basic) virtual product than low- and high-status users. User’s network density enhances the effect of social influence on adoption of both virtual products, even more for the upgraded one.

Originality/value

This research contributes to the social influence and product adoption literature by disentangling the different effects of social influence on basic and upgraded versions of a virtual product. It also identifies the boundary conditions that social influence works for each version of the virtual product.

Details

Internet Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1066-2243

Keywords

1 – 10 of 19