To read this content please select one of the options below:

A morphology-Euclidean-linear recognition method for rebar point clouds of highway tunnel linings during the construction phase

Lizhi Zhou (School of Qilu Transportation, Shandong University, Jinan, China)
Chuan Wang (Shandong Hi-Speed Group, Jinan, China)
Pei Niu (School of Qilu Transportation, Shandong University, Jinan, China)
Hanming Zhang (School of Qilu Transportation, Shandong University, Jinan, China)
Ning Zhang (Shandong Hi-Speed Group, Jinan, China)
Quanyi Xie (School of Qilu Transportation, Shandong University, Jinan, China)
Jianhong Wang (School of Qilu Transportation, Shandong University, Jinan, China)
Xiao Zhang (School of Civil Engineering, Shandong University, Jinan, China) (Weifang Hydrodynamics Science and Technology Industry Institute, Weifang, China)
Jian Liu (School of Qilu Transportation, Shandong University, Jinan, China) (Shandong Research Institute of Industrial Technology, Jinan, China)

Engineering, Construction and Architectural Management

ISSN: 0969-9988

Article publication date: 14 August 2024

41

Abstract

Purpose

Laser point clouds are a 3D reconstruction method with wide range, high accuracy and strong adaptability. Therefore, the purpose is to discover a construction point cloud extraction method that can obtain complete information about the construction of rebar, facilitating construction quality inspection and tunnel data archiving, to reduce the cost and complexity of construction management.

Design/methodology/approach

Firstly, this paper analyzes the point cloud data of the tunnel during the construction phase, extracts the main features of the rebar data and proposes an M-E-L recognition method. Secondly, based on the actual conditions of the tunnel and the specifications of Chinese tunnel engineering, a rebar model experiment is designed to obtain experimental data. Finally, the feasibility and accuracy of the M-E-L recognition method are analyzed and tested based on the experimental data from the model.

Findings

Based on tunnel morphology characteristics, data preprocessing, Euclidean clustering and PCA shape extraction methods, a M-E-L identification algorithm is proposed for identifying secondary lining rebars in highway tunnel construction stages. The algorithm achieves 100% extraction of the first-layer rebars, allowing for the three-dimensional visualization of the on-site rebar situation. Subsequently, through data processing, rebar dimensions and spacings can be obtained. For the second-layer rebars, 55% extraction is achieved, providing information on the rebar skeleton and partial rebar details at the construction site. These extracted data can be further processed to verify compliance with construction requirements.

Originality/value

This paper introduces a laser point cloud method for double-layer rebar identification in tunnels. Current methods rely heavily on manual detection, lacking objectivity. Objective approaches for automatic rebar identification include image-based and LiDAR-based methods. Image-based methods are constrained by tunnel lighting conditions, while LiDAR focuses on straight rebar skeletons. Our research proposes a 3D point cloud recognition algorithm for tunnel lining rebar. This method can extract double-layer rebars and obtain construction rebar dimensions, enhancing management efficiency.

Keywords

Acknowledgements

This work was supported by the Shandong Transportation Technology Project (2021B52), Taishan Scholars Program (tstp20221153), Natural Science Foundation of Shandong Province (ZR2022DKX001) and Youth Foundation of Shandong Natural Science Foundation of China (ZR2021QE279).

Citation

Zhou, L., Wang, C., Niu, P., Zhang, H., Zhang, N., Xie, Q., Wang, J., Zhang, X. and Liu, J. (2024), "A morphology-Euclidean-linear recognition method for rebar point clouds of highway tunnel linings during the construction phase", Engineering, Construction and Architectural Management, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/ECAM-12-2023-1227

Publisher

:

Emerald Publishing Limited

Copyright © 2024, Emerald Publishing Limited

Related articles