Search results

1 – 10 of over 3000
Article
Publication date: 2 November 2018

Jinwu Xiang, Kai Liu, Daochun Li, Chunxiao Cheng and Enlai Sha

The purpose of this paper is to investigate the unsteady aerodynamic characteristics in the deflection process of a morphing wing with flexible trailing edge, which is based on…

496

Abstract

Purpose

The purpose of this paper is to investigate the unsteady aerodynamic characteristics in the deflection process of a morphing wing with flexible trailing edge, which is based on time-accurate solutions. The dynamic effect of deflection process on the aerodynamics of morphing wing was studied.

Design/methodology/approach

The computational fluid dynamic method and dynamic mesh combined with user-defined functions were used to simulate the continuous morphing of the flexible trailing edge. The steady aerodynamic characteristics of the morphing deflection and the conventional deflection were studied first. Then, the unsteady aerodynamic characteristics of the morphing wing were investigated as the trailing edge deflects at different rates.

Findings

The numerical results show that the transient lift coefficient in the deflection process is higher than that of the static case one in large angle of attack. The larger the deflection frequency is, the higher the transient lift coefficient will become. However, the situations are contrary in a small angle of attack. The periodic morphing of the trailing edge with small amplitude and high frequency can increase the lift coefficient after the stall angle.

Practical implications

The investigation can afford accurate aerodynamic information for the design of aircraft with the morphing wing technology, which has significant advantages in aerodynamic efficiency and control performance.

Originality/value

The dynamic effects of the deflection process of the morphing trailing edge on aerodynamics were studied. Furthermore, time-accurate solutions can fully explore the unsteady aerodynamics and pressure distribution of the morphing wing.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 October 2006

Nathan B. Crane, J. Wilkes, E. Sachs and Samuel M. Allen

Solid freeform fabrication processes such as three‐dimensional printing (3DP) and selective laser sintering (SLS) produce porous parts. Metal parts produced by these processes…

1600

Abstract

Purpose

Solid freeform fabrication processes such as three‐dimensional printing (3DP) and selective laser sintering (SLS) produce porous parts. Metal parts produced by these processes must be densified by sintering or infiltration to achieve maximum material performance. New steel infiltration methods can produce parts of standard alloy compositions with properties comparable to wrought materials. However, the infiltration process introduces dimensional errors due to both shrinkage and creep — particularly at the high temperatures required for steel infiltration. Aims to develop post‐processing method to reduce creep and shrinkage of porous metal skeletons.

Design/methodology/approach

The proposed process treats porous metal parts with a nanoparticle suspension that strengthens the bonds between particles to reduce creep and sintering shrinkage during infiltration. The process is tested by comparing the deflection and shrinkage of treated and untreated cantilevers heated to infiltration temperatures. The method is demonstrated with an iron nanoparticles suspension applied to parts made of 410 SS powder.

Findings

This process reduced creep by up to 95 percent and shrinkage by 50 percent. The best results were obtained using multiple applications of the nanoparticles dried under a magnetic field. Carbon deposited with the iron is shown to provide substantial benefit, but the iron is critical to establish strong bonds at low temperatures for minimal creep.

Research limitations/implications

This work shows that dimensional stability of porous metal skeletons during infiltration processes can be significantly improved by treatment with nanoparticles. The increased dimensional stability afforded by this technique can combine the excellent properties of homogenous infiltration with substantially improved part accuracy and open up new applications for this manufacturing technology.

Originality/value

The work shows how solid freeform fabrication processes can be improved.

Details

Rapid Prototyping Journal, vol. 12 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 August 2021

Kexin Zhang, Tianyu Qi, Dachao Li, Xingwei Xue and Zhimin Zhu

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health…

Abstract

Purpose

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health monitoring after reinforcement were carried out. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved.

Design/methodology/approach

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. High strength, low relaxation steel strand with high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel strand and steel plate was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on finite element model.

Findings

The cumulative upward deflection of the second span the third span was 39.7 mm, which is basically consistent with the theoretical value, and the measured value is smaller than the theoretical value. The deflection value of the second span during data acquisition was −20 mm–10 mm, which does not exceed the maximum deflection value of live load, and the deflection of the bridge is in a safe state during normal use. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

Originality/value

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. To investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening and health monitoring after reinforcement were carried out.

Details

International Journal of Structural Integrity, vol. 12 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 December 2020

Hamid Reza Ovesy, Ali Gharibi and Reza Khaki

This study aims to develop a new correlation method for prediction of in-flight wings deflections by integration of the experimental ground tests with computational fluid dynamics…

Abstract

Purpose

This study aims to develop a new correlation method for prediction of in-flight wings deflections by integration of the experimental ground tests with computational fluid dynamics (CFD) analysis.

Design/methodology/approach

The ground test results are implemented in the curve fitting process to determine deflections at 66 specific points (SPs) on the front and rear wing torque box. By using the obtained deflections and the corresponding applied loads, an experimental deflection equation (EDE) for each point is established through the Castigliano’s theorem. The CFD aerodynamic loads of typical aircraft, which have been obtained earlier by the authors, are once again used in the current research. The total applied loads to each part are achieved via summation of inertia and aerodynamic loads. The obtained loads are transformed to the equivalent concentrated loads at the SPs. By substituting the concentrated load values in the EDEs, the SPs deflections are achieved for mentioned flight conditions. The resulted deflections and the corresponding input flight parameters, i.e. M and α, are incorporated into a linear regression method for development of the appropriate in-flight deflection equations (IFDEs). The validity of IFDEs is approved by comparing IFDEs’ deflections with the corresponding ones calculated through EDEs for different flight conditions.

Findings

As an alternative approach to the fairly expensive flight tests, the IFDEs can be used to predict the in-flight wing deflections with comparable degree of accuracy.

Originality/value

Prediction of actual wing deflections distributions without flight tests execution at any given flight condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 August 2021

Erina Baynojir Joyee, Jida Huang, Ketki Mahadeo Lichade and Yayue Pan

The purpose of this study is to develop a novel approach to designing locally programmed multi-material distribution in a three-dimensional (3D) model, with the goal of producing…

Abstract

Purpose

The purpose of this study is to develop a novel approach to designing locally programmed multi-material distribution in a three-dimensional (3D) model, with the goal of producing a biomimetic robot that could mimic the locomotion of living organisms.

Design/methodology/approach

A voxelized representation is used to design the multi-material digital model and the material distribution in the model is optimized with the aims of mimicking the deflection dynamics of a real-life biological structure (i.e. inchworms) during its locomotion and achieving smooth deflection between adjacent regions. The design is validated post-fabrication by comparing the bending profiles of the printed robot with the deflection reference images of the real-life organism.

Findings

The proposed design framework in this study provides a foundation for multi-material multi-functional design for biomimicry and a wide range of applications in the manufacturing field and many other fields such as robotics and biomedical fields. The final optimized material design was 3D printed using a novel multi-material additive manufacturing method, magnetic field-assisted projection stereolithography. From the experimental tests, it was observed that the deflection curve and the deflection gradient of the printed robot within the adjacent regions of the body agreed well with the profiles taken from the real-life inchworm.

Originality/value

This paper presents a voxelized digital representation of the material distribution in printed parts, allowing spatially varied programming of material properties. The incorporation of reference images from living organisms into the design approach is a novel approach to transform image domain knowledge into the domain of engineering mechanical and material properties. Furthermore, the novel multi-material distribution design approach was validated through designing, 3D printing and prototyping an inchworm-inspired soft robot, which showed superior locomotion capability by mimicking the observed locomotion of the real inchworm.

Open Access
Article
Publication date: 22 September 2022

Marcin Figat

This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that…

1523

Abstract

Purpose

This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that needs a lot of detailed aerodynamic analysis which describes the mutual impact of the main parts of the aircraft. The purpose of this paper is to build the numerical model that allows to make an analysis of necessary flaps (front and rear) deflection and prepare the control strategy for this kind of aircraft.

Design/methodology/approach

Aircrafts’ aerodynamic characteristics were obtained using the MGAERO software which is a commercial computing fluid dynamics tool created by Analytical Methods, Inc. This software uses the Euler flow model. Results from this software were used in the static stability evaluation and trim condition analysis. The trim conditions are the outcome of the optimisation process whose goal was to find the best front and rear flap deflection to achieve the best lift to drag (L/D) ratio.

Findings

The main outcome of this investigation is the proposal of strategy for the front and rear flap deflection which ensured the maximum L/D ratio and satisfied the trim condition. Moreover, the analysis of the mutual impact of the front and rear wings and the analysis of the control surface impact on the aerodynamic characteristic of the aircraft are presented.

Research limitations/implications

In terms of aerodynamic computation, MGAERO software uses an inviscid flow model. However, this research is for the conceptual stage of the design and the MGAERO software grantee satisfied accurate respect to relatively low time of computations.

Practical implications

The ultimate goal is to build an aircraft in a tandem wing configuration and to conduct flying tests or wind tunnel tests. The presented result is one of the milestones to achieve this goal.

Originality/value

The aircraft in the tandem wing configuration is an aerodynamic-coupled configuration that needs detailed analysis to find the mutual interaction between the front and rear wings. Moreover, the mutual impact of the front and rear flaps is necessary too. Obtaining these results allowed this study to build the numerical model of the aircraft in the tandem wing configuration. It allows to find the best strategy of flap deflection, which allows to obtain the maximum L/D ratio and satisfy the trim condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 1990

An innovative system to assemble television tube deflection units has won Philips Components Washington, UK plant the 1990 Queen's Award for Technological Achievement.

Abstract

An innovative system to assemble television tube deflection units has won Philips Components Washington, UK plant the 1990 Queen's Award for Technological Achievement.

Details

Assembly Automation, vol. 10 no. 4
Type: Research Article
ISSN: 0144-5154

Article
Publication date: 10 April 2017

Steven John Henderson

The purpose of this paper is to argue that there is a degree of nonsense in the idea that that an organisation has a strategy, since firms have no mind, heart or soul they cannot…

6036

Abstract

Purpose

The purpose of this paper is to argue that there is a degree of nonsense in the idea that that an organisation has a strategy, since firms have no mind, heart or soul they cannot have a sense of purpose about themselves and their futures. The lecture considers the ways that those working in organisations, and those responsible for strategy, deflect their thoughts from this idea and the nonsense that results from it.

Design/methodology/approach

The paper recasts Whittington’s Schools of Strategy as deflection strategies, arguing that they are coherent means of displacing attention from the absurdities that result from attributing strategies to organisations rather than people. The key points are illustrated by quotes from Lewis Carroll’s The Hunting of the Snark, as the leader of the heroic band faces and overcomes most of the key strategizing problem experience in business strategy.

Findings

Important issues such rationality, benchmarking, learning, leadership, followership and corporate social responsibility crumble into nonsense when it is recalled that these are all human, rather than organisational qualities.

Practical implications

Most strategies do not succeed and most management of change seldom achieves the changes desired. The paper argues that this is chiefly because pragmatic stratagems are frequently idealised into truth claims and prescriptions of doubtful provenance. Scholars of management must bear some responsibility for the resulting nonsense.

Social implications

The paper argues that it is not possible to do strategy and change without invoking nonsense. Yet, this is a remarkable achievement, nonetheless, for a creature that evolved to chase small game across a savannah.

Originality/value

The paper raises important ontological and epidemiological issues of strategy and change in ways that neither create impenetrable language barriers nor require a philosophical background to grasp.

Details

Journal of Organizational Change Management, vol. 30 no. 2
Type: Research Article
ISSN: 0953-4814

Keywords

Article
Publication date: 26 September 2023

Lang Li, Jiahui Li, Fan Zhang, Fusen Jia and Lei Li

Sandwich structures with well-designed cellular cores exhibit superior shock resistance compared to monolithic structures of equal mass. This study aims to develop a comprehensive…

Abstract

Purpose

Sandwich structures with well-designed cellular cores exhibit superior shock resistance compared to monolithic structures of equal mass. This study aims to develop a comprehensive analytical model for predicting the dynamic response of cellular-core sandwich structures subjected to shock loading and investigate their application in protective design.

Design/methodology/approach

First, an analytical model of a clamped sandwich beam for over-span shock loading was developed. In this model, the incident shock-wave reflection was considered, the clamped face sheets were simplified using two single-degree-of-freedom (SDOF) systems, the core was idealized using the rigid-perfectly-plastic-locking (RPPL) model in the thickness direction and simplified as an SDOF system in the span direction. The model was then evaluated using existing analytical models before being employed to design the sandwich-beam configurations for two typical engineering applications.

Findings

The model effectively predicted the dynamic response of sandwich panels, especially when the shock-loading pulse shape was considered. The optimal compressive cellular-core strength increased with increasing peak pressure and shock-loading impulse. Neglecting the core tensile strength could result in an overestimation of the optimal compressive cellular-core strength.

Originality/value

A new model was proposed and employed to optimally design clamped cellular-core sandwich-beam configurations subjected to shock loading.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2024

Zeyang Zhou and Jun Huang

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Abstract

Purpose

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Design/methodology/approach

The aircraft model with delta wing, V-shaped tail and blended wing body is designed, and high-precision unstructured grid technology is used to deal with the surface of air brake and fuselage. The calculation method based on multiple tracking and dynamic scattering is presented to calculate RCS.

Findings

The fuselage has a low scattering level, and the opening air brake will bring obvious dynamic RCS effects to itself and the whole machine. The average indicator of air brake RCS can be lower than –0.6 dBm2 under the tail azimuth, while that of forward and lateral direction is lower. The mean RCS of fuselage is obviously higher than that of air brake, while the deflected air brake and its cabin can still provide strong scattering sources at some azimuths. When the air brake is opening, the change amplitude of the aircraft forward RCS can exceed 19.81 dBm2.

Practical implications

This research has practical significance for the dynamic electromagnetic scattering analysis and stealth design of the air brake.

Originality/value

The calculation method for aircraft RCS considering air brake dynamic deflection has been established.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 3000