Search results

1 – 10 of 148
Article
Publication date: 11 June 2020

Shaoze Lu, Jun Huang and Mingxu Yi

By reducing the coating thickness of the weak scattering source, the coating weight of the absorbing material can be reduced by 35% with little effect on the RCS.

Abstract

Purpose

By reducing the coating thickness of the weak scattering source, the coating weight of the absorbing material can be reduced by 35% with little effect on the RCS.

Design/methodology/approach

To alleviate the weight-increasing problem caused by a large number of coating of absorbing materials, a method for zonal coating of absorbing materials for a stealth helicopter was proposed. By appropriately reducing the thickness of the coating at the secondary scattering locations, the amount of coating used is significantly reduced.

Findings

Compared with the full-coated, the zonal coating scheme achieves the corresponding RCS reduction effect.

Practical implications

Zonal coating design can achieve the effect of reducing coating weight and cost.

Originality/value

The effects of different coating methods on RCS were verified by electromagnetic scattering simulation, and the applicability of the zonal coating design of the absorbing material to the stealth helicopter was verified.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 January 2013

Shaofei Chen, Hongfu Liu, Jing Chen and Lincheng Shen

The purpose of this paper is to plan the penetration trajectory for unmanned aerial vehicle (UAV) in the presence of radar‐guided surface to air missiles (SAMs).

Abstract

Purpose

The purpose of this paper is to plan the penetration trajectory for unmanned aerial vehicle (UAV) in the presence of radar‐guided surface to air missiles (SAMs).

Design/methodology/approach

The penetration trajectory planning problem is modelled based on four aspects of radar tracking features. As penetration just utilizes the low observability of radar cross section (RCS) to satisfy temporal constraints of tracking, the problem is formulated as multi‐phase trajectory planning with detected probability (MTP‐DP). While utilizing both the low observability of RCS and the radial velocity blind area of radar, the problem is formulated as multi‐phase trajectory planning with detected probability and radial velocity (MTP‐DP&RV). The pseudospectral multi‐phase optimal control based trajectory planning algorithm is proposed.

Findings

The results of the examples illustrate that the multi‐phase trajectory planning method can finely utilize the radar tracking features to optimize the comprehensive efficiency of penetration. The pseudospectral multi‐phase optimal control based trajectory planning algorithm could effectively solve the trajectory planning problem.

Originality/value

This paper provides new structured method to plan UAV penetration trajectory for military application and academic study.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 April 2024

Zeyang Zhou and Jun Huang

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Abstract

Purpose

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Design/methodology/approach

The aircraft model with delta wing, V-shaped tail and blended wing body is designed, and high-precision unstructured grid technology is used to deal with the surface of air brake and fuselage. The calculation method based on multiple tracking and dynamic scattering is presented to calculate RCS.

Findings

The fuselage has a low scattering level, and the opening air brake will bring obvious dynamic RCS effects to itself and the whole machine. The average indicator of air brake RCS can be lower than –0.6 dBm2 under the tail azimuth, while that of forward and lateral direction is lower. The mean RCS of fuselage is obviously higher than that of air brake, while the deflected air brake and its cabin can still provide strong scattering sources at some azimuths. When the air brake is opening, the change amplitude of the aircraft forward RCS can exceed 19.81 dBm2.

Practical implications

This research has practical significance for the dynamic electromagnetic scattering analysis and stealth design of the air brake.

Originality/value

The calculation method for aircraft RCS considering air brake dynamic deflection has been established.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 April 2023

Zeyang Zhou and Jun Huang

This study aims to study the radar cross-section (RCS) of an intermeshing rotor with blade pitch.

Abstract

Purpose

This study aims to study the radar cross-section (RCS) of an intermeshing rotor with blade pitch.

Design/methodology/approach

The variation of rotor blade pitch is designed into three modes: fixed mode, linear mode and smooth mode. The dynamic process of two crossed rotors is simulated, where the instantaneous RCS is calculated by physical optics and physical theory of diffraction.

Findings

Increasing the pitch angle in the fixed mode can reduce the average RCS of rotor at the given head azimuth. The RCS curve of helicopter in linear mode and smooth mode will have a large peak in the side direction at the given moment. Although the blade pitch in smooth mode is generally larger than that in fixed mode, the smooth mode is conducive to reducing the peak and mean value of helicopter RCS at the given heading azimuth.

Originality/value

The calculation method for analyzing RCS of intermeshing rotor with variable blade pitch is established.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 July 2019

Eduardo Sepulveda Palacios and Howard Smith

The purpose of this paper is to characterise the effects of mission and performance parameters on the design space of low observable subsonic unmanned combat aerial vehicles…

Abstract

Purpose

The purpose of this paper is to characterise the effects of mission and performance parameters on the design space of low observable subsonic unmanned combat aerial vehicles (UCAVs) operating in typical Hi-Lo-Hi ground strike missions.

Design/methodology/approach

Conceptual design methodologies appropriate to low observable, tailless UCAVs have been integrated into a multidisciplinary aircraft design environment, GENUS, developed at Cranfield University’s aircraft design group. A basic Hi-Lo-Hi mission is designed and a baseline configuration is established through the GENUS framework. Subsequently, an evolutionary optimiser and a robust gradient-based optimiser are used to obtain convergent design solutions for various leading edge sweep angles, mission ranges, cruise Mach numbers and other operational constraints.

Findings

The results indicate that performance constraints, specifically in the form of specific excess power (SEP), have a large influence on the overall sizing of subsonic tailless UCAVs. This requirement drives the engine sizing, which represents a considerable proportion of the empty and gross mass of the vehicle. Cruise Mach number studies show that no significant advantages exist for operating at low speeds while maintaining performance requirements consistent with combat missions. There is a drastic increase in the vehicle’s mass and thrust requirements for flight speeds above Mach 0.8, with low sweep configurations showing a more pronounced effect. Increases in the range are not overly dependent on the leading edge sweep angle. Top-level radar cross section (RCS) results also favour configurations with higher leading edge sweep angles, especially from the nose-on aspect. Finally, research and development costs are shown to be directly linked to engine size.

Originality/value

This research shows the use of an integrated aircraft design environment that incorporates aerodynamics, performance, packaging and low observability aspects into the optimisation loop. Through this methodology, this study supports the efforts towards characterising and establishing alternate visions of the future of aerial warfare through the use of low cost, survivable unmanned platforms in network-centric cooperative tasks.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 August 2023

Zeyang Zhou and Jun Huang

This paper aims to discuss the electromagnetic scattering characteristics of the afterbody model with two drag plates.

Abstract

Purpose

This paper aims to discuss the electromagnetic scattering characteristics of the afterbody model with two drag plates.

Design/methodology/approach

The plane shape of the drag plate model is designed as a rectangle. High-precision unstructured grid technology is used to treat the target surface. A calculation method based on multiple tracking and dynamic scattering module is presented to calculate the radar cross section (RCS).

Findings

The results show that under the given observation conditions, the RCS and surface scattering characteristics of a single drag plate change with the increase of the opening angle, which makes the forward RCS of the afterbody model change more than 8.43 dBm2. The opening of two resistance plates at different fixed angles has little effect on the peak value and position of the RCS of the afterbody model. The dynamic deflection of the two drag plates can bring 16.78 dBm2 fluctuations to the forward RCS of the afterbody model, and more than 25.59 dBm2 fluctuations to the side RCS.

Practical implications

The installation positions of the drag plate on the aircraft are various, so the method in this paper can provide reference and support for RCS analysis of the speed brake at other positions.

Originality/value

The presented calculation method is of engineering value to analyze the electromagnetic scattering characteristics of the drag plate.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 September 2022

Zeyang Zhou and Jun Huang

The purpose of his paper is to study the radar stealth performance of a Y-type quadrotor with coaxial rotors and parallel rotors.

Abstract

Purpose

The purpose of his paper is to study the radar stealth performance of a Y-type quadrotor with coaxial rotors and parallel rotors.

Design/methodology/approach

This Y-type quadrotor is designed as an aerodynamic layout with parallel twin rotors at the front and coaxial twin rotors at the rear. The multi-rotor scattering (MRS) method based on multi-rotor dynamic simulation (MRDS) and electromagnetic scattering module (ESM) is presented. MRDS is used to simulate the complex rotation of parallel rotors and coaxial rotors. ESM is used to calculate the instantaneous radar cross-section (RCS) of the quadrotor.

Findings

For a single rotor, the minimum period of the RCS curve at a given azimuth is equal to the basic passage time of the blade, where increasing the speed can shorten this minimum period. When the elevation angle increases, the forward RCS fluctuation of the quadrotor increases, while the average RCS decreases. The change of the roll angle will affect both the mean and the maximum difference of the RCS–time curve at the given lateral azimuth. The increase of the pitch angle will enhance the dynamic amplitude of the RCS–time curve under the forward azimuth.

Practical implications

The research in this article can provide reference for the stealth design of the Y-type quadcopter in the future.

Originality/value

The originality is the establishment of the MRS method. This method could provide value for dealing with the electromagnetic scattering problem of coaxial rotors and parallel rotors.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 1997

Howard Smith

Reports on the MSc group design project of students at the College of Aeronautics, Cranfield University. Details the design of the aircraft systems and their reliability and…

1361

Abstract

Reports on the MSc group design project of students at the College of Aeronautics, Cranfield University. Details the design of the aircraft systems and their reliability and maintainability.

Details

Aircraft Engineering and Aerospace Technology, vol. 69 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 18 January 2024

Kajal Vinayak and Shripad P. Mahulikar

In recent years, increased use of all-aspect infrared (IR)-guided missiles based on the long-wave infrared (LWIR; 8–12 µm) band has lowered the probability of aircraft survival in…

Abstract

Purpose

In recent years, increased use of all-aspect infrared (IR)-guided missiles based on the long-wave infrared (LWIR; 8–12 µm) band has lowered the probability of aircraft survival in warfare. The lock-on of these highly sensitive missiles is difficult to break, especially from the front. Aerodynamically heated swept-back leading edges (SBLE), because of their high temperature and large area, serve as a prominent LWIR source for aircraft detection from the front. This study aims to report the influence of sweep-back angle (Λ, based on the Mach number [M]) on aerodynamic heating and the LWIR signature of SBLE.

Design/methodology/approach

The temperature along SBLE is obtained numerically as radiation equilibrium temperature (Tw) by discretizing the SBLE length into “n” number of segments, and for each segment, emission based on Tw is evaluated. IR radiance due to reflected external sources (sky-shine and Earthshine) and radiance due to Tw are collectively used to determine the IR contrast between SBLE and its replaced background in the LWIR band (icont-SBLE,LWIR).

Findings

The results are obtained for low subsonic turboprop aircraft (Λ = 3°, M = 0.44); high subsonic strategic bombers (Λ = 35°, M = 0.8); fifth-generation stealth aircraft (Λ = 40°, M = 1.6); and aircraft with supercruise/supersonic capability (Λ = 50°, M = 2.5). The aircraft with supersonic capability (Λ = 50°, M = 2.5) reports the maximum LWIR signatures and hence the highest visibility from the front. The results obtained are compared with values at Λ = 0° for all cases, which shows that increasing Λ significantly reduces aerodynamic heating and LWIR signatures.

Originality/value

The novelty of this study comes from its report on the influence of Λ on the LWIR signatures of aircraft SBLE in the frontal aspect for the first time.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 July 2020

Muhammet Çağrı Ayan, Serap Kiriş, Ahmet Yapici, Muharrem Karaaslan, Oğuzhan Akgöl, Olcay Altıntaş and Emin Ünal

The purpose of this paper is to investigate cotton fabric behavior that is exposed to radar waves between selected operation frequencies as an alternative radar-absorbing material…

Abstract

Purpose

The purpose of this paper is to investigate cotton fabric behavior that is exposed to radar waves between selected operation frequencies as an alternative radar-absorbing material (RAM) response. Cotton fabric biocomposite materials were compared with carbon fabric composite materials, which are good absorbers, in terms of mechanical and electromagnetic (EM) properties for that purpose.

Design/methodology/approach

The laminated composite plates were manufactured by using a vacuum infusion process. The EM tests were experimentally performed with a vector network analyzer to measure reflection, transmission and absorption ability of cotton fabric, carbon fabric and cotton–carbon fabric (side by side) composite plates between 3 and 18 GHz. The tensile and low-velocity impact tests were carried out to compare the mechanical properties of cotton fabric and carbon fabric composite plates. A scanning electron microscope was used for viewing the topographical features of fracture surfaces.

Findings

The cotton fabric composite plate exhibits low mechanical values, but it gives higher EM wave absorption values than the carbon fabric composite plate in certain frequency ranges. Comparing the EM absorption properties of the combination of cotton and carbon composites with those of the carbon composite alone, it appears that the cotton–carbon combination can be considered as a better absorber than the carbon composite in a frequency range from 12 to 18 GHz at Ku band.

Originality/value

This paper shows how cotton, which is a natural and easily supplied low-cost raw material, can be evaluated as a RAM.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 148