Search results

21 – 30 of over 4000
Article
Publication date: 31 December 2019

Bassam Abdallah, M. Kakhia and W. Alsadat

TiN and TiAlVN films have been prepared by DC magnetron sputtering technique at room temperature. TiN target has been used to deposit TiN thin film under pure argon (100 percent…

Abstract

Purpose

TiN and TiAlVN films have been prepared by DC magnetron sputtering technique at room temperature. TiN target has been used to deposit TiN thin film under pure argon (100 percent Ar) gas. Additionally, Ti6Al4V alloy target has been used to deposit TiAlVN under nitrogen and argon gas (50 percent Ar and 50 percent N2). In this paper, two substrate types have been used: stainless steel 304 and Si(100). This analysis has confirmed that the nitride films, (TiN/Si) and TiAlVN in both cases, have been produced. Energy Depressive X-ray Spectroscopy (EDX) measurement confirmed that the TiN/Si was stoichiometry, where the N/Ti ratio was about 1 with low oxygen contamination. The results obtained have indicated that the TiAlVN has more resistance to corrosion than TiN film in 3.5 percent NaCl at 25°C (seawater). Both films, TiAlVN/SS304 and TiN/SS304, have shown improved corrosion resistance compared with virgin 304 substrate. Microhardness was carried out using Vickers method; the microhardness values for TiN/SS304 and TiAlVN/SS304 were approximately 7.5 GPa and 25.3 GPa, respectively. The paper aims to discuss these issues.

Design/methodology/approach

The films were prepared by a DC magnetron sputtering system starting from high pure (99.99 percent) Ti6Al4V target (Al 6wt%, V 4wt% and balance Ti) in plasma discharge argon/nitrogen (50 percent Ar and 50 percent N2) for deposition of TiAlVN film. Pure TiN target (99.99 percent) was used for preparation of TiN film in pure argon plasma. The diameter of target was 50 mm and the power applied for preparation of the two films was 100 W. A cylindrical high-vacuum chamber (Figure 2) made of stainless steel 316, with height 363 mm diameter, was fabricated locally. Scanning electron microscope images have been used to discover the films morphology. The composition of the films has been determined by EDX technique for films deposited on Si substrate. The electrochemical corrosion test was carried out using conventional three-electrode cell of 300 ml capacity by using Voltalab PGZ 301 system (France) using Tafel extrapolation method and electrochemical impedance spectroscopy techniques.

Findings

TiN and TiAlVN films have been prepared by DC magnetron sputtering technique without heating of the substrates holder. The effects of the composition of nitride films on mechanical and corrosion properties were investigated. The composition of the films has been determined by EDX technique. The effect of using titanium alloy (Ti with Al and V) on the composition and crystalline quality has been investigated. The microhardness is strongly dependent on the addition of the Al and V elements, and it consequently improves mechanical proprieties. The microhardness values for TiN/SS304 were approximately 7.5 GPa and 25.3 GPa for TiAlVN/SS304. They indicate that prepared films prevent the aggressive action of corrosion media.

Originality/value

TiN and TiAlVN films have been prepared by DC magnetron sputtering method at room temperature. Titanium nitride film, especially TiAlVN, is an effective method to improve the corrosion resistance of SS304. TiAlVN film has exhibited enhanced corrosion resistance and higher microhardness. Independent time-of-flight elastic recoil detection analysis has been used to determine the composition of the film.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 January 2011

Mun Teng Soo, Kuan Yew Cheon and Ahmad Fauzi Mohd Noor

The purpose of this paper is to report on metal‐oxide‐semiconductor (MOS) capacitor‐based O2 sensors with different catalytic metal electrode (Al or Pd), deposited on both smooth…

Abstract

Purpose

The purpose of this paper is to report on metal‐oxide‐semiconductor (MOS) capacitor‐based O2 sensors with different catalytic metal electrode (Al or Pd), deposited on both smooth and porous surface (pore diameter ranging from 2.76 to 71.6 μm) of ZrO2 thin film.

Design/methodology/approach

The ZrO2 thin film has been prepared by RF sputtering and DC magnetron sputtering process followed by thermal oxidation process, whereas the electrodes were deposited on thin film by thermal evaporation. The sensors are exposed to O2 gas ambient at room temperature and the O2 sensing performance has been examined by surface characterizations and on‐line sensing electrical characterizations.

Findings

MOS capacitor O2 sensor with Pd electrode on porous ZrO2 thin film has the best sensitivity in term of both adsorption and desorption of gas. This sensor is proved to be operated in both capacitor and diode modes.

Originality/value

The paper demonstrates that room temperature MOS‐based O2 sensor operates in capacitor and diode mode conditions with focus on the effect of ZrO2 surface morphology on the sensing properties.

Details

Microelectronics International, vol. 28 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 May 2012

Mirjana S. Damnjanović, Ljiljana D. Živanov, Snezana M. Djurić, Andrea M. Marić, Aleksandar B. Menićanin, Goran J. Radosavljević and Nelu V. Blaž

Significant achievements in ferrite material processing enable developments of many ferrite devices with a wide range of power levels and working frequencies, which make demands…

Abstract

Purpose

Significant achievements in ferrite material processing enable developments of many ferrite devices with a wide range of power levels and working frequencies, which make demands for new characterization and modelling methods for ferrite materials and components. The purpose of this paper is to introduce a modelling and measurement procedure, which can be used for the characterization of two‐port ferrite components in high frequency range.

Design/methodology/approach

This paper presents a commercially available ferrite component (transformer) modelling and determination of its electrical parameters using in‐house developed software. The components are measured and characterized using a vector network analyzer E5071B and adaptation test fixture on PCB board. The parameters of electrical equivalent circuit of the ferrite transformer parameters are compared with values extracted out of measured scattering parameters.

Findings

A good agreement between modelled and extracted electrical parameters of the ferrite transformer is found. The modelled inductance curves have the same dependence versus frequency as extracted ones. That confirms the model validity in the wide frequency range.

Originality/value

In‐house developed software based on proposed model provides inclusion of the ferrite material dispersive characteristics, which dominantly determines high‐frequency behaviour of two‐port ferrite components. Developed software enables fast and accurate calculation of the ferrite transformer electrical parameters and its redesign in order to achieve the best performance for required application.

Details

Microelectronics International, vol. 29 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 28 November 2019

Tingting Zhao, Y.T. Feng and Yuanqiang Tan

The purpose of this paper is to extend the previous study [Computer Methods in Applied Mechanics and Engineering 340: 70-89, 2018] on the development of a novel packing…

Abstract

Purpose

The purpose of this paper is to extend the previous study [Computer Methods in Applied Mechanics and Engineering 340: 70-89, 2018] on the development of a novel packing characterising system based on principal component analysis (PCA) to quantitatively reveal some fundamental features of spherical particle packings in three-dimensional.

Design/methodology/approach

Gaussian quadrature is adopted to obtain the volume matrix representation of a particle packing. Then, the digitalised image of the packing is obtained by converting cross-sectional images along one direction to column vectors of the packing image. Both a principal variance (PV) function and a dissimilarity coefficient (DC) are proposed to characterise differences between different packings (or images).

Findings

Differences between two packings with different packing features can be revealed by the PVs and DC. Furthermore, the values of PV and DC can indicate different levels of effects on packing caused by configuration randomness, particle distribution, packing density and particle size distribution. The uniformity and isotropy of a packing can also be investigated by this PCA based approach.

Originality/value

Develop an alternative novel approach to quantitatively characterise sphere packings, particularly their differences.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 November 2015

Q.M Mehran, A.R Bushroa, M.A Fazal and M.M. Quazi

– The purpose of this study is to design and develop a new functional coating system for aerospace AL7075-T6 alloy that would evaluate the mechanical properties of the coating.

Abstract

Purpose

The purpose of this study is to design and develop a new functional coating system for aerospace AL7075-T6 alloy that would evaluate the mechanical properties of the coating.

Design/methodology/approach

This paper outlines the scratch adhesion characterisation of Cr/CrAlN coating using a combination of radio frequency (RF) and direct current (DC) physical vapour deposition (PVD) magnetron sputtering. The surface morphology, microstructure and chemical composition of the Cr/CrAlN film were evaluated by optical microscopy (OM), field emission scanning electron microscopy (FESEM) integrated with energy-dispersive X-Ray spectroscopy (EDX) and atomic force microscopy (AFM). The film-to-substrate adhesion was measured by a scratch test machine manufactured with a detection system, motorized stages, penetration depth sensors, optical microscope and tangential frictional load sensors.

Findings

The AFM and ultra-micro hardness results showed an increase in surface roughness to about 20 per cent and hardness to about 74 per cent. Moreover, the film-to-substrate adhesion strength of 1,814 mN was obtained with PVD deposition process.

Research limitations/implications

The main limitation of this work is caused by PVD deposition process. Besides, surface defects such as pinholes contribute to a decrease in adhesion strength.

Practical implications

The higher hardness of CrAlN coating is used to improve the properties of softer aluminium substrates. This hardness prevents ploughing-induced wear and provides greater adhesion strength by preventing coating delamination.

Originality/value

Until now, CrAlN is coated only on ferrous alloys. It has not yet been tried on aluminium alloys. Moreover, coating functionality depends on higher adhesion and failure mechanisms involved in the film-to-substrate system, which is significant in aerospace applications.

Details

Pigment & Resin Technology, vol. 44 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 1999

Jiri Militky, Marie Travnickova and Vladimir Bajzik

The main aim of this contribution is characterization of fabric porosity by the light transmission and comparison of this characteristic with air permeability and idealized…

Abstract

The main aim of this contribution is characterization of fabric porosity by the light transmission and comparison of this characteristic with air permeability and idealized geometrical structure of selected weaves. For characterization of air permeability the classical apparatus has been used. The transmission of light through fabrics has been measured on the system LUCIA for image analysis. The porosity of textiles has been evaluated from corresponding construction parameters and idealized models of fabric geometry. The dependencies between the above mentioned characteristics were formalized by using regression analysis.

Details

International Journal of Clothing Science and Technology, vol. 11 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 January 2006

Elia Marzal

The object of this research is the reconstruction of the existing legal response by European Union states to the phenomenon of immigration. It seeks to analyse the process of…

3614

Abstract

Purpose

The object of this research is the reconstruction of the existing legal response by European Union states to the phenomenon of immigration. It seeks to analyse the process of conferral of protection.

Design/methodology/approach

One main dimension is selected and discussed: the case law of the national courts. The study focuses on the legal status of immigrants resulting from the intervention of these national courts.

Findings

The research shows that although the courts have conferred an increasing protection on immigrants, this has not challenged the fundamental principle of the sovereignty of the states to decide, according to their discretionary prerogatives, which immigrants are allowed to enter and stay in their territories. Notwithstanding the differences in the general constitutional and legal structures, the research also shows that the courts of the three countries considered – France, Germany and Spain – have progressively moved towards converging solutions in protecting immigrants.

Originality/value

The research contributes to a better understanding of the different legal orders analysed.

Details

Managerial Law, vol. 48 no. 1/2
Type: Research Article
ISSN: 0309-0558

Keywords

Article
Publication date: 2 May 2017

Kirubaveni Savarimuthu, Radha Sankararajan and Sudha Murugesan

The purpose of this paper is to present the design of a piezoelectric vibration energy generator with a power conditioning circuit to power a wireless sensor node. Frequency and…

Abstract

Purpose

The purpose of this paper is to present the design of a piezoelectric vibration energy generator with a power conditioning circuit to power a wireless sensor node. Frequency and voltage characterization of the piezoelectric energy harvester is performed. A single-stage AC–DC power converter that integrates the rectification and boosting circuit is designed, simulated and implemented in hardware.

Design/methodology/approach

The designed power conditioning circuit incorporates bridgeless boost rectification, a lithium ion battery as an energy storage unit and voltage regulation to extract maximum power from PZT-5H and to attain higher efficiency. The sensor node is modelled in active and sleep states on the basis of the power consumption. Dynamic modelling of the lithium ion battery with its state of charging and discharging is analysed.

Findings

The test result shows that the energy harvester produces a maximum power of 65.9 mW at the resonant frequency of 21.4 Hz. The designed circuit will operate even at a minimum input voltage of 0.5 V. The output from the harvester is rectified, boosted to a 7-V DC output and regulated to 3.3 V to the power C_Mote wireless sensor node. The conversion efficiency of the circuit is improved to 70.03 per cent with a reduced loss of 19.76 mW.

Originality/value

The performance of the energy harvester and the single-stage power conditioning circuit is analysed. Further, the design and implementation of the proposed circuit lead to an improved conversion efficiency of 70.03 per cent with a reduced loss of 19.76 mW. The vibration energy harvester is integrated with a power conditioning circuit to power a wireless sensor node C_Mote. The piezoelectric vibration energy harvester is implemented in real time to power C_Mote.

Article
Publication date: 6 July 2012

Daniele Desideri, Alvise Maschio, Marco Bolzan, Marco Natali and Monica Spolaore

The purpose of this paper is to obtain a multidisciplinary characterization of nanostructured copper films for electromagnetic shields.

Abstract

Purpose

The purpose of this paper is to obtain a multidisciplinary characterization of nanostructured copper films for electromagnetic shields.

Design/methodology/approach

Structural and electrical analysis have been applied, on copper nanometric films produced by a magnetron sputtering device.

Findings

Data are provided for copper films realized by magnetron sputtering deposition on glass, in different operating conditions.

Practical implications

A multidisciplinary comprehension of shielding effectiveness of nanostructured thin films can be important in many applications where there are electromagnetic compatibility problems.

Originality/value

The paper gives a valuable set of information for the characterization of nanometric copper thin films.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 2016

Dorota Szwagierczak, Jan Kulawik, Beata Synkiewicz and Agata Skwarek

The work was aimed at preparation of green tapes based on a new material Bi2/3CuTa4O12, to achieve spontaneously formation of an internal barrier layer capacitor (IBLC)…

Abstract

Purpose

The work was aimed at preparation of green tapes based on a new material Bi2/3CuTa4O12, to achieve spontaneously formation of an internal barrier layer capacitor (IBLC), fabrication of multilayer elements using low temperature cofired ceramics (LTCC) technology and their characterization.

Design/methodology/approach

The study focused on tape casting, lamination and co-sintering procedures and dielectric properties of Bi2/3CuTa4O12 multilayer capacitors. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies of the ceramic elements were performed. Impedance spectroscopy was used for characterization of dielectric properties in the frequency range of 0.1 Hz to −2 MHz and in the temperature range from −55 to 400°C. DC conductivity was investigated in the temperature range 20 to 740°C.

Findings

SEM observations revealed a good compatibility of the applied commercial Pt paste with the ceramic layers. The EDS microanalysis showed a higher content of oxygen at grain boundaries. The dominant dielectric response, which was recorded in the low frequency range and at temperatures above 0°C, was attributed to grain boundaries. The dielectric response at low temperatures and/or high frequencies was related to grains. The fabricated multilayer capacitors based on Bi2/3CuTa4O12 exhibited a high specific capacitance.

Originality/value

A new material Bi2/3CuTa4O12 was applied for preparation of green ceramic tapes and utilized for fabrication of multilayer ceramic capacitors using the LTCC technology. This material belongs to the group of high permittivity nonferroelectric compounds with a complex perovskite structure of CaCu3Ti4O12, that causes the spontaneously formation of IBLCs.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

21 – 30 of over 4000