Search results

1 – 10 of over 6000

Abstract

Details

Handbook of Microsimulation Modelling
Type: Book
ISBN: 978-1-78350-570-8

Article
Publication date: 17 July 2023

Youping Lin

The interval multi-objective optimization problems (IMOPs) are universal and vital uncertain optimization problems. In this study, an interval multi-objective grey wolf…

Abstract

Purpose

The interval multi-objective optimization problems (IMOPs) are universal and vital uncertain optimization problems. In this study, an interval multi-objective grey wolf optimization algorithm (GWO) based on fuzzy system is proposed to solve IMOPs effectively.

Design/methodology/approach

First, the classical genetic operators are embedded into the interval multi-objective GWO as local search strategies, which effectively balanced the global search ability and local development ability. Second, by constructing a fuzzy system, an effective local search activation mechanism is proposed to save computing resources as much as possible while ensuring the performance of the algorithm. The fuzzy system takes hypervolume, imprecision and number of iterations as inputs and outputs the activation index, local population size and maximum number of iterations. Then, the fuzzy inference rules are defined. It uses the activation index to determine whether to activate the local search process and sets the population size and the maximum number of iterations in the process.

Findings

The experimental results show that the proposed algorithm achieves optimal hypervolume results on 9 of the 10 benchmark test problems. The imprecision achieved on 8 test problems is significantly better than other algorithms. This means that the proposed algorithm has better performance than the commonly used interval multi-objective evolutionary algorithms. Moreover, through experiments show that the local search activation mechanism based on fuzzy system proposed in this study can effectively ensure that the local search is activated reasonably in the whole algorithm process, and reasonably allocate computing resources by adaptively setting the population size and maximum number of iterations in the local search process.

Originality/value

This study proposes an Interval multi-objective GWO, which could effectively balance the global search ability and local development ability. Then an effective local search activation mechanism is developed by using fuzzy inference system. It closely combines global optimization with local search, which improves the performance of the algorithm and saves computing resources.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 September 2022

Jing Zhao, Xin Wang, Biyun Xie and Ziqiang Zhang

This paper aims to present a new kinematics mapping method based on dynamic equivalent points. In teleoperation, this method enables a robotic (follower) arm to mimic human…

Abstract

Purpose

This paper aims to present a new kinematics mapping method based on dynamic equivalent points. In teleoperation, this method enables a robotic (follower) arm to mimic human (leader) arm postures and avoid obstacles in a human-like manner.

Design/methodology/approach

The information of the human arm is extracted based on the characteristics of human arm motion, and the concept of equivalent points is introduced. Then, an equivalent point is determined to transform the robotic arm with a nonhuman-like kinematic structure into an anthropomorphic robotic arm. Based on this equivalent point, a mapping method is developed to ensure that the two arms are similar. Finally, the similarity between the human elbow angle and robot elbow angle is further improved by using this method and an augmented Jacobian matrix with a compensation coefficient.

Findings

Numerical simulations and physical prototype experiments are conducted to verify the effectiveness and feasibility of the proposed method. In environments with obstacles, this method can adjust the position of the equivalent point in real time to avoid obstacles. In environments without obstacles, the similarity between the human elbow angle and robot elbow angle is further improved at the expense of the end-effector accuracy.

Originality/value

This study presents a new kinematics mapping method, which can realize the complete mapping between the human arm and heterogeneous robotic arm in teleoperation. This method is versatile and can be applied to various mechanical arms with different structures.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 October 2019

Yuri Merizalde, Luis Hernández-Callejo, Oscar Duque-Pérez and Víctor Alonso-Gómez

Despite the wide dissemination and application of current signature analysis (CSA) in general industry, CSA is not commonly used in the wind industry, where the use of vibration…

Abstract

Purpose

Despite the wide dissemination and application of current signature analysis (CSA) in general industry, CSA is not commonly used in the wind industry, where the use of vibration signals predominates. Therefore, the purpose of this paper is to review the use of generator CSA (GCSA) in the online fault detection and diagnosis of wind turbines (WTs).

Design/methodology/approach

This is a bibliographical investigation in which the use of GCSA for the maintenance of WTs is analyzed. A section is dedicated to each of the main components, including the theoretical foundations on which GCSA is based and the methodology, mathematical models and signal processing techniques used by the proposals that exist on this topic.

Findings

The lack of appropriate technology and mathematical models, as well as the difficulty involved in performing actual studies in the field and the lack of research projects, has prevented the expansion of the use of GCSA for fault detection of other WT components. This research area has yet to be explored, and the existing investigations mainly focus on the gearbox and the doubly fed induction generator; however, modern signal treatment and artificial intelligence techniques could offer new opportunities in this field.

Originality/value

Although literature on the use of GCSA for the detection and diagnosis of faults in WTs has been published, these papers address specific applications for each of the WT components, especially gearboxes and generators. For this reason, the main contribution of this study is providing a comprehensive vision for the use of GCSA in the maintenance of WTs.

Details

Journal of Quality in Maintenance Engineering, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 18 October 2018

Subhamita Chakraborty, Prasun Das, Naveen Kumar Kaveti, Partha Protim Chattopadhyay and Shubhabrata Datta

The purpose of this paper is to incorporate prior knowledge in the artificial neural network (ANN) model for the prediction of continuous cooling transformation (CCT) diagram of…

Abstract

Purpose

The purpose of this paper is to incorporate prior knowledge in the artificial neural network (ANN) model for the prediction of continuous cooling transformation (CCT) diagram of steel, so that the model predictions become valid from materials engineering point of view.

Design/methodology/approach

Genetic algorithm (GA) is used in different ways for incorporating system knowledge during training the ANN. In case of training, the ANN in multi-objective optimization mode, with prediction error minimization as one objective and the system knowledge incorporation as the other, the generated Pareto solutions are different ANN models with better performance in at least one objective. To choose a single model for the prediction of steel transformation, different multi-criteria decision-making (MCDM) concepts are employed. To avoid the problem of choosing a single model from the non-dominated Pareto solutions, the training scheme also converted into a single objective optimization problem.

Findings

The prediction results of the models trained in multi and single objective optimization schemes are compared. It is seen that though conversion of the problem to a single objective optimization problem reduces the complexity, the models trained using multi-objective optimization are found to be better for predicting metallurgically justifiable result.

Originality/value

ANN is being used extensively in the complex materials systems like steel. Several works have been done to develop ANN models for the prediction of CCT diagram. But the present work proposes some methods to overcome the inherent problem of data-driven model, and make the prediction viable from the system knowledge.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 2001

D.X. Gong, B.K. Hinds and J. McCartney

The requirements in CAD modelling of garments are first considered and alternative user interfaces are considered. Features which occur in block patterns and for which accurate…

Abstract

The requirements in CAD modelling of garments are first considered and alternative user interfaces are considered. Features which occur in block patterns and for which accurate simulation is required are identified. An energy based modeller, developed for drape simulation, is introduced and applied to model garment constructional details in fabric test specimens of variable stiffness. The modeller is further applied to garment pieces in contact with a mannequin to compare drape with and without constructional features.

Details

International Journal of Clothing Science and Technology, vol. 13 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 November 2009

C.B. Li, G.X. Yang, Z.H. Huang, Y. Xin, C. Wang and J.H. Yuan

The purpose of this paper is to focus on the development of highly efficient emission materials for light‐emitting diodes (LEDs).

Abstract

Purpose

The purpose of this paper is to focus on the development of highly efficient emission materials for light‐emitting diodes (LEDs).

Design/methodology/approach

The equilibrium geometries of silole‐based derivatives are optimised by means of DFT/B3LYP method with the 6‐31G(d) basis set in this paper. The geometries of single‐excitation are optimised using the ab initio configuration interaction with single excitations/6‐31G(d), the first singlet excited states and optical properties are calculated by using time‐dependent density‐functional theory based on the 6‐31G(d) basis set.

Findings

The highest occupied molecular orbital and lowest unoccupied molecular orbital suffer larger effects from the variation of the substituent groups of methyls and phenyls. The absorption wavelengths of all the cases are similar, but the emission wavelengths are significantly different.

Research limitations/implications

Solid‐state stacking effect is not included in this paper.

Originality/value

In view of the application of silole‐based derivatives systems, the control of photophysical properties and electronic structures by structural modification is relevant to further molecular design.

Details

Pigment & Resin Technology, vol. 38 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 August 2022

Qingxin Xie, Fujin Yi and Xu Tian

This paper aims to investigate the changes in living standard among families with different socio-economic status in China with the use of Engel's Coefficient. The authors develop…

Abstract

Purpose

This paper aims to investigate the changes in living standard among families with different socio-economic status in China with the use of Engel's Coefficient. The authors develop a decomposition methodology to figure out the driving forces behind changes in Engel's Coefficient, and investigate how dramatic economic growth, volatile food price and rapid nutrition transition affect living standard among different families.

Design/methodology/approach

The authors propose a statistical method to decompose the changes in living standard measured by Engel's Coefficient into structure effect, price effect, quantity effect and income effect. Using the China Health and Nutrition Survey data between 2000 and 2011, the authors estimate these four effects by employing a decomposition method.

Findings

Results show that Engel's Coefficient in China decreased by 8.7 percentage points (hereafter “pp”) during 2000–2011, where structure effect leads to 0.2 pp increase, price effect results in 17.7 pp increase, quantity effect brings about 12.4 pp decline and income effect contributes to 14.2 pp decline. Results indicate that rising food prices are the main obstacle to improve households' living standard. Typically, poor and rural families' living standard is more vulnerable to the rise in food prices, and they benefit less from income growth.

Originality/value

This study proposes a decomposition method to investigate the determinants of change in Engel's Coefficient, which provides a deeper understanding of how economic growth, food price change and nutrition transition affect people's living standard in different socio-economic groups in developing countries. This study also provides valuable insights on how to achieve common prosperity from the perspective of consumption upgrading.

Details

China Agricultural Economic Review, vol. 15 no. 3
Type: Research Article
ISSN: 1756-137X

Keywords

Article
Publication date: 8 September 2022

Johnny Kwok Wai Wong, Mojtaba Maghrebi, Alireza Ahmadian Fard Fini, Mohammad Amin Alizadeh Golestani, Mahdi Ahmadnia and Michael Er

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes…

Abstract

Purpose

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes. The state-of-the-art low-light image enhancement method provides promising image enhancement results. However, they generally require a longer execution time to complete the enhancement. This study aims to develop a refined image enhancement approach to improve execution efficiency and performance accuracy.

Design/methodology/approach

To develop the refined illumination enhancement algorithm named enhanced illumination quality (EIQ), a quadratic expression was first added to the initial illumination map. Subsequently, an adjusted weight matrix was added to improve the smoothness of the illumination map. A coordinated descent optimization algorithm was then applied to minimize the processing time. Gamma correction was also applied to further enhance the illumination map. Finally, a frame comparing and averaging method was used to identify interior site progress.

Findings

The proposed refined approach took around 4.36–4.52 s to achieve the expected results while outperforming the current low-light image enhancement method. EIQ demonstrated a lower lightness-order error and provided higher object resolution in enhanced images. EIQ also has a higher structural similarity index and peak-signal-to-noise ratio, which indicated better image reconstruction performance.

Originality/value

The proposed approach provides an alternative to shorten the execution time, improve equalization of the illumination map and provide a better image reconstruction. The approach could be applied to low-light video enhancement tasks and other dark or poor jobsite images for object detection processes.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 20 November 2023

Reddy K. Prasanth Kumar, Nageswara Rao Boggarapu and S.V.S. Narayana Murty

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and…

Abstract

Purpose

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and demonstrated their validity through comparison of test data. The method suggests a few tests as per the orthogonal array and provides complete information for all combinations of levels and process variables. This method also provides the estimated range of output responses so that the scatter in the repeated tests can be assessed prior to the tests.

Design/methodology/approach

In order to obtain defect-free products meeting the required specifications, researchers have conducted extensive experiments using powder bed fusion (PBF) process measuring the performance indicators (namely, relative density, surface roughness and hardness) to specify a set of printing parameters (namely, laser power, scanning speed and hatch spacing). A simple and reliable multi-objective optimization method is considered in this paper for specifying a set of optimal process parameters with SS316 L powder. It was reported that test samples printed even with optimal set of input variables revealed irregular shaped, microscopic porosities and improper melt pool formation.

Findings

Finally, based on detailed analysis, it is concluded that it is impossible to express the performance indicators, explicitly in terms of equivalent energy density (E_0ˆ*), which is a combination of multiple sets of selective laser melting (SLM) process parameters, with different performance indicators. Empirical relations for the performance indicators are developed in terms of SLM process parameters. Test data are within/close to the expected range.

Practical implications

Based on extensive analysis of the SS316 L data using modified Taguchi approach, the optimized process parameters are laser power = 298 W, scanning speed = 900 mm/s and hatch distance = 0.075 mm, for which the results of surface roughness = 2.77 Ra, relative density = 99.24%, hardness = 334 Hv and equivalent energy density is 4.062. The estimated data for the same are surface roughness is 3.733 Ra, relative density is 99.926%, hardness is 213.64 Hv and equivalent energy density is 3.677.

Originality/value

Even though equivalent energy density represents the energy input to the process, the findings of this paper conclude that energy density should no longer be considered as a dependent process parameter, as it provides multiple results for the specified energy density. This aspect has been successfully demonstrated in this paper using test data.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 6000